Tagged standards

Screen capture from computer-generated virtual reality software showing the user's virtual hand reaching for controls in a simulated space. In the middle of the screen are multi-colored, three-dimensional models of spiraling biochemical proteins and floating controls with various labels "uploader, ON, Sun Position, Model, Position, Rotation, Skybox."
4

Barriers to Supporting Accessible VR in Academic Libraries

Abstract

Virtual reality (VR) shows great promise for enhancing the learning experience of students in higher education and academic libraries are at the forefront of efforts to bring VR into the curriculum as an innovative learning tool. This paper reviews some of the growing applications and benefits of VR technologies for supporting pedagogy in academic libraries and outlines the challenges of making VR accessible for disabled students. It defines existing regulations and guidelines for designing accessible digital technologies and offers two case studies drawn from each of the authors’ own academic libraries, at Temple University and at the University of Oklahoma, in order to provide insight into the challenges and benefits of making VR more accessible for students. The paper argues that to continue to serve their mission of equitable access to information for the entire student population, academic libraries that implement VR programs need to balance innovation with inclusion by allocating sufficient staff time and technical resources and bringing accessibility thinking into VR projects from the beginning. To accomplish this, libraries will need the assistance of software developers and accessibility experts, and librarians will need to act as strong advocates for better support from commercial software and hardware vendors and to promote change in their institutions.

Introduction

Virtual reality (VR) and other extended reality (XR) technologies show great promise for supporting pedagogy in higher education. VR gives students the chance to immerse themselves in virtual worlds and engage with rich three-dimensional (3D) models of learning content, ranging from biochemical models of complex protein structures to cultural heritage sites and artifacts. Research shows that VR can increase student engagement, support the development of spatial cognitive skills, and enhance the outcomes of design-based activities in fields such as architecture and engineering. With these benefits, however, come the risks that VR will exacerbate inequality and exclusions for disabled students.[1] Disability is typically defined as a combination of physical (e.g., not having use of one’s legs) and participation (e.g., not having a ramp so that a wheelchair user can access services) barriers. According to the Center for Disease Control, 26% of adults in the United States have a disability. These include cognitive, mobility, hearing, visual, and other types of disability.

As a class of technologies that engage multiple senses, VR has the capacity to engage users’ bodies and senses in a holistic, immersive experience. This suggests that VR holds great potential for supporting users with a diverse range of sensory, motor, or cognitive capabilities; however, there is no guarantee that the affordances of VR will be deployed in accessible ways. In fact, the cultural tendency to ignore disability coupled with the rapid pace of technological innovation have led to VR programs that exclude a variety of users. Within higher education, the exclusion of disabled students from the benefits of these new technologies being deployed risks leaving behind a significant portion of the student population. The U.S. Department of Education, National Center for Education Statistics (2019) has found that 19.4% of undergraduates and 11.9% of graduate students have some form of disability. Libraries have long been leaders in supporting accessibility (Jaeger 2018) and the rise of immersive technologies presents an opportunity for them to continue to be leaders in making information available to all users. Academic libraries, the focus of this paper, are particularly well positioned to address the challenges of VR accessibility given their leadership in innovative information services and existing close relationships with the research and pedagogy communities at their institutions.

In what follows, we present a brief outline of the recent emergence of VR technologies in academic libraries, introduce recent research on VR accessibility, and conclude with a discussion of two brief case studies drawn from the authors’ institutions that illustrate the benefits and barriers associated with implementing accessibility programs for VR in academic libraries.

VR in Higher Education

“Virtual reality” or “VR” refers to a class of technologies that enable interactive and immersive experiences of computer-generated worlds, produced through a mixture of visual, auditory, haptic, and/or olfactory stimuli that engage with the human sensory system and provide the user with an experience of being present in a virtual world. In most VR systems, visual and auditory senses are primarily engaged, with increasing research being done on integrating haptics and other stimuli. Different levels of immersion and interaction are possible depending on the specific configuration of devices, from relatively low immersion and low interaction provided by inexpensive 3D cardboard viewers for use with mobile devices (e.g., Google Cardboard) to expensive head-mounted displays (HMDs) such as the HTC Vive and Oculus Rift systems that use headsets and head and body tracking sensors to capture users’ movements along “six degrees of freedom” (three dimensions of translational movement along x, y, and z axes, plus three dimensions of rotational movement, roll, pitch, and yaw). At present, HMDs are more commonly used than CAVEs, or “Cave Automatic Virtual Environment,” room-sized VR environments that use 3D video projectors, head and body tracking, and 3D glasses to provide multi-user VR experiences (Cruz-Neira et al. 1992), which have been used in academic contexts since the 1990s. This interest in new information technologies that provide library users with access to computer-generated worlds is not new for librarians. The current interest in VR follows experimentation conducted in libraries beginning earlier in the 2000s on “virtual worlds,” 3D computer-generated social spaces, such as Second Life, that users interacted with through a typical configuration of 2D computer monitor, mouse, and keyboard. Libraries envisioned these technologies as potential tools for expanding library services and enhancing support for student learning and research evaluated the pedagogical efficacy of these new tools (e.g., Bronack et al. 2008; Carr, Oliver, and Burn 2010; Deutschmann, Panichi, and Molka-Danielsen 2009; Holmberg and Huvila 2008; Praslova, Sourin, and Sourina 2006).

Since the commercial release of affordable VR systems such as the HTC Vive and Oculus Rift in 2016 (and now cheaper, lower-resolution variants such as Oculus Go and Oculus Quest), academic libraries have started seriously exploring the possibility of VR to support research and pedagogy. They have begun to conceptualize VR as a platform for immersive user engagement with high-resolution 3D models that support existing curricular activities, such as the use of archaeological, architectural, or scientific models in classroom exercises. Cook and Lischer-Katz (2019) argue

the realistic nature of immersive virtual reality learning environments supports scholarship in new ways that are impossible with traditional two-dimensional displays (e.g., textbook illustrations, computer screens, etc.). … Virtual reality succeeds (or fails), then, insofar as it places the user in a learning environment within which the object of study can be analyzed as if that object were physically present and fully interactive in the user’s near visual field. (70)

VR has been used to support student learning in a variety of fields, such as anthropology and biochemistry (Lischer-Katz, Cook, and Boulden 2018), architecture (Milovanovic 2017; Pober and Cook, 2016; Schneider et al. 2013), and anatomy (Jang et al. 2017). Patterson et al. (2019) describe how the librarians at the University of Utah have been incorporating VR technologies into a wide variety of classes, supporting architecture students, geography students, dental students, fine arts students, and nursing students. From this perspective, VR is envisioned as a tool for accessing digital proxies of physical artifacts or locations that students would ordinarily engage with as physical models (for instance, casts of hominid skull specimens), artifacts, or locations, but which are often too expensive or difficult to access directly.

In addition to providing enhanced modes of access to learning materials, using VR can also enhance student engagement and self-efficacy if implemented in close consultation with faculty (Lischer-Katz, Cook, and Boulden 2018). The technical affordances of VR, when deployed with care, are able to support a range of pedagogical objectives. Dalgarno and Lee (2010) identified representational fidelity (i.e., realistic display of objects, realistic motion, etc.) and learner interaction (i.e., student interaction with educational content) as key affordances of VR technologies, which they suggest can support a range of learning benefits they identified, including spatial knowledge representation, experiential learning, engagement, contextual learning, and collaborative learning. Chavez and Bayona (2018) surveyed the research on literature on VR and identified interaction and immersion as the two aspects of VR that should be considered when designing VR learning applications. Similarly, Johnson-Glenberg (2018) identified a set of design principles for using VR in education based on related affordances of VR—“the sense of presence and the embodied affordances of gesture and manipulation in the third dimension” (1) and found that “active and embodied learning in mediated educational environments results in significantly higher learning gains” (9). Research also suggests that the special visual aspects of VR, such as depth perception and motion cues (Ware and Mitchell 2005), head tracking (Ragan et al. 2013), and immersive displays (Ni, Bowman and Chen 2006) are able to enhance the analytic capabilities of human perception. VR has been shown to enhance human abilities of visual pattern-recognition and decision-making, particularly when working with big data (Donalek et al. 2014), prototyping (Abhishek, Vance, and Oliver 2011), or understanding complex spatial relationships and structures in data sets (Prabhat et al. 2008; Kersten-Oertel, Chen and Collins 2014; Laha, Bowman and Socha 2014).

Immersion is often identified by researchers as a key characteristic of VR technologies that is applicable to enhancing the learning experiences of students. Fowler (2015) identified three types of VR immersion relevant to pedagogy: Conceptual immersion, which supports development of abstract knowledge through students’ self-directed exploration of learning materials, for instance, molecular models; task immersion, in which students begin to engage with and manipulate learning materials; and social immersion, in which students engage in dialogue with others to test and expand upon their understanding. One critique of the applications of VR-based pedagogy is that instructional designers and instructors rarely indicate their underlying learning models or theories (Johnston et al. 2018). For instance, Lund and Wang (2019) found that VR can improve student engagement in library instruction, but do not specify which pedagogical models are effective, instead comparing a particular classroom activity with traditional classroom methods versus the same activity using VR, measuring impact on academic performance and motivation. Radianti et al. (2020), in their review of 38 recent empirical studies on VR pedagogy, acknowledge that while immersion is a critical component of the pedagogical affordances of VR, different studies define the term differently. They also found that only 32% of the studies reviewed indicated which learning theories or models underpin research studies, which makes it difficult to generalize approaches and apply them to other contexts. Radianti et al. (2020) point out that “in some domains such as engineering and computer science, certain VR applications have been used on a regular basis to teach certain skills, especially those that require declarative knowledge and procedural–practical knowledge. However, in most domains, VR is still experimental and its usage is not systematic or based on best practices” (26).

What these trends suggest is that VR shows great potential for use in supporting classroom instruction in higher education institutions, even though pedagogical models and methods of evaluation are still being developed and most projects are in the experimental phase of development. Some fields have already been adopting VR into their departments, such as computer science, engineering, and health science programs, but academic libraries are leading the way in promoting VR for their wider campus communities (Cook and Lischer-Katz 2019). Since many libraries are emerging as leaders in supporting VR, it is essential for them to have policies and support services in place to ensure that these new technologies are usable by all potential users at their institution.

As librarians consider adopting these innovative technologies, discourses of innovation can sometimes lead to oversights that may exclude some users. VR technologies enter libraries alongside other emerging technologies and innovative library services. The current discourse of transformational change promoted by the corporate information technology sector are often at odds with critical approaches to librarianship that stress inclusion and social justice (Nicholson 2015). These conceptions of radical innovation and disruption construct institutions, their policies, and regulations as structures that only function to slow down and constrain innovation. The assumption is that innovative technology is inherently neutral in terms of its ethics and politics, and that it does not require institutional processes to constrain or limit its negative effects; however, by decoupling technological change from institutionalized processes that protect the rights of historically marginalized groups of library patrons, technological change inevitably reinscribes exclusion into the infrastructures of learning. As Mirza and Seale (2017) argue

technocratic visions of the future of libraries aspire to a world outside of politics and ideology, to the unmarked space of white masculinity, but such visions are embedded in multiple layers and axes of privilege. They elide the fact that technology is not benevolently impartial but is subject to the same inequities inherent to the social world. (187)

The idea that technologies embed biases and cultural assumptions is not a new idea—scholars in the field of Science and Technology Studies have argued for decades that technologies are never neutral (e.g., Winner 1986)—but librarians, library administrators, and library science researchers often forget to examine their own “tunnel vision and blind spots” (Wiegand, 1999), or more precisely, their unreflected implicit biases that shape decision making about which technologies to adapt and how to deploy them in libraries. On the other hand, this also means that it is possible to balance innovation with inclusivity by foregrounding library values at the start of the process of innovation, rather than by retrofitting designs, which can yield results that are less equitable and more costly (Wentz, Jaeger and Lazar 2011). Clearly, the learning affordances of VR (Dalgarno and Lee 2010), as they are currently designed, need to be reimagined for disabled users.

VR and Accessibility

Aside from these ethical considerations, as VR becomes increasingly common in education, business, and other disciplines, it becomes answerable to legal guidelines. Federal guidelines for more established information and communication technology can be found in Section 508 of the Rehab Act (see U.S. General Services Administration n.d.), which utilizes Web Content Accessibility Guidelines (WCAG) 2.0 as a standard for web technology (W3C Web Accessibility Initiative 2019). WCAG provide guidance on how to make web content accessible to disabled people and they are overseen by the Web Accessibility Initiative (WAI), part of the World Wide Web Consortium (W3C) (see W3C Web Accessibility Initiative 2019). While they provide a valuable framework, WCAG do not directly apply to immersive technologies and there are currently no accessibility guidelines that do so. Work has been done to develop individual accessibility extensions, hardware, and features, but measurable guidelines that would aid in accessible design are still needed. Only in the last few years have accessibility specialists started adapting existing guidelines by examining existing initiatives and mapping them to the success criteria in WCAG. This includes the XR Access Symposium that was held in the summer of 2019 (see Azenkot, Goldberg, Taft, and Soloway 2019), as well as W3C’s Inclusive Design for Immersive Web Standards Workshop held in the fall of 2019 (see W3C 2019). There are also more specific guidelines that can contribute to design considerations, such as the Game Accessibility Guidelines that are more focused on game design (see Ellis et al. n.d.). Increasing the urgency of this matter, as of December 31, 2018, any video game communication functionality released in 2019 or later must be accessible to disabled people under the 21st Century Communications and Video Accessibility Act (Enamorado 2019), which expands the group of industries mandated to meet accessibility guidelines to include the video game industry.

Those interested in learning more about the accessible design of VR and other immersive technologies should consider reading “Accessible by Design: An Opportunity for Virtual Reality” (Mott et al. 2019), which provides general guidelines for designing accessible VR. For an example of designing accessible tools for a specific user group, see Zhao et al. (2019), which details the developments of a VR toolkit for supporting low-vision users.

Before going any further, it is important to distinguish between VR in its current, popularized form vs. the affordances of VR as a medium. The initiatives, guidelines, and research projects referred to in this section are still largely focused on analyzing the design of the former. However, in order for the technology to become truly accessible, critical inquiry must continue to progress in its understanding of the broader capabilities, limitations, and levels of interaction that construct the latter. The design practices and recommendations that have been developed to support the accessibility of VR are largely individualized and prototypical, which means that each institution’s particular experiences tackling the challenges of accessible VR will vary based on a number of factors. These factors include their individual histories supporting VR, staffing levels and development support, resources, and institutional commitments to accessibility. As librarians at Temple University and University of Oklahoma, we are now in the process of developing guidelines and tools to meet these challenges.

VR at Temple University’s Loretta C. Duckworth Scholars Studio

Temple University’s Loretta C. Duckworth Scholars Studio (LCDSS) “serves as a space for student and faculty consultations, workshops, and collaborative research in digital humanities, digital arts, cultural analytics, and critical making” (Temple University Libraries n.d.). Before the main library’s relocation to its new building, the LCDSS, formerly known as the Digital Scholarship Center (DSC), was located in the basement of Paley Library. Upon its 2015 opening, the DSC had two Oculus Rift DK2 headsets available for interested users. Its space in the new Charles Library includes an Immersive Visualization Studio designed for up to 10 people to simultaneously participate in immersive experiences, and as of 2019 has twelve headsets from a variety of manufacturers, in addition to mobile based headsets with an eye towards continuous acquisition of newer technologies. There are six full-time staff members, one of whom is responsible for the upkeep and management of the Immersive Studio among their other duties.

In August of 2017, I (Jasmine Clark) began researching the accessibility of VR as part of a project I was developing during my library residency.[2] Upon reviewing existing literature, it was apparent that research on the usability of VR for disabled users was in its early stages. Most notable was a report, “VR Accessibility: Survey for People with Disabilities,” resulting from a survey of disabled VR users produced in partnership by ILMxLab and the Disability Visibility Project (see Wong, Gillis, and Peck 2018). However, the majority of research and resources exploring the applications of VR to disabled people were composed of one-off solutions and extensions. This included cases of VR being used as an assistive technology (e.g., spatial training for blind individuals), unique hardware solutions (e.g., the haptic cane), and known issues for specific types of users (e.g., assumed standing position in games being disorienting for wheelchair users). These developments, while valuable, were not design standards or solutions broadly adopted by the game industry. Another concern was the fact that, in the context of the DSC, VR was not just a technology, but also a service that included training and assistance in its use for library patrons. This added an additional layer of complexity because, while there have been discussions on disability in the context of making and makerspaces, there was no literature on accessible service policies, best practices, and documentation for digital scholarship as a whole. In response to these challenges, I began examining existing guidelines and assessing their applicability to emerging technologies. Because WCAG is the federal standard, I joined a working group that guided me through reading the supporting documents and success criteria of WCAG, as well as examining the major legislative changes that were happening around accessibility at that time. I also began working with Jordan Hample, the DSC’s (now LCDSS’s) main technical support staff member, to understand whether or not these guidelines were applicable to immersive technologies.

Because we also needed to address service practices and policies, I decided that user testing would be necessary. User testing would consist of three phases that would take place during a single visit: a pre-interview (to ensure safety and gain an understanding of a user’s disability and previous technical experience), a use test (where users would use VR headsets), and a post-interview (to solicit feedback). I coordinated with Temple’s Disability Resources and Services (DRS) and DSC staff to bring in disabled stakeholders (students, alumni, and other members of the Temple community) in an attempt to 1) determine whether or not they would be able to utilize the equipment, and 2) determine if there were barriers to providing them with the same level of service as other patrons. As Wong, Gillis, and Peck (2018) point out in their report, “people with disabilities are not a monolith—accessibility and inclusion is different for everyone” (1). In order to scope the research to a manageable scale, I decided we would begin with visually impaired, deaf/Hard-of-Hearing (HOH), and hearing impaired users (hearing impairment would include individuals with tinnitus, or other auditory conditions not included under the umbrella of deaf/HOH). Working with Jordan, as well as Alex Wermer-Colan, a Council on Library and Information Resources (CLIR) postdoctoral fellow, I proceeded to draft a research protocol that consisted of interview questions and an explanation for participants of what VR is and the purpose of the research being conducted. These were all sent out via DRS listservs to solicit participants. VR services in the DSC involved a lot of hands-on onboarding and orientation from staff. Often, patrons would drop in and simply want to get acquainted with the technology. As a result, the goal of the research project was for disabled participants in our user testing to be able to navigate to our space and successfully work with the staff members responsible for providing VR assistance to identify experiences that would be as usable as possible for them. There was also a need to better understand staff preparedness in providing assistance to disabled patrons. In the months leading up to the testing, I had preliminary discussions with staff, and also inquired into staff training on accessibility and disability more generally at the library and university level. I found that training was not formalized, so I gathered and shared resources with my colleagues to ensure the safety and dignity of participants. This included referring to the Gallaudet University’s guide on working with American Sign Language (ASL) interpreters (see Laurent Clerc National Deaf Education Center 2015) and various video tutorials on acting as a sighted guide for blind/low-vision people, and maintaining active discussions and explanations around ableism and disability. The discussions also allowed for better understanding of gaps in training and norms.

Once staff were sufficiently prepared, user testing commenced in the summer of 2018. Four participants were invited to the center, three of whom had various visual impairments and one of whom was deaf. On the days of their visits, I would go to the library entrance to greet and guide anyone who needed assistance. Upon arrival, they were brought into a meeting room for a pre-interview that would reintroduce the purpose of user testing, gauge any previous experience with the technology, and identify safety concerns by asking if they had other sensitivities that they felt would be a problem in VR (e.g., sensory sensitivities, sensitivity to flashing lights, etc.). We also asked about level of hearing/vision to get a better idea of which types of experiences worked for different types of hearing/vision. Some immediate questions brought up by participants were around accuracy of sound, depth perception, and similarity to real-world visual experience. Once the initial interview was completed, they were guided out to work with Jordan to identify potential experiences, similar to the way he typically worked with students. I took notes on the interactions, and Alex assisted as needed. Alex’s presence became particularly important when it came to the deaf user. It was brought to our attention that 1) due to variations in inner ear formation, those who were deaf/HOH were at higher risk for vertigo and, 2) a user reliant upon an ASL interpreter would not be able to see the interpreter while in the headset, complicating human assistance. In response, Alex took on the role of surrogate for this participant while they watched his activity on a monitor and gave instructions and feedback. Jordan took on the role of listening to the participants’ verbal feedback on each experience and, utilizing his knowledge of the DSC’s licenses for different VR programs, selected experiences that would be more accommodating to their specific hearing/visual needs.

Upon completion of this phase, participants were then brought back into the meeting room for a post interview. Responses to both interviews, as well as observations made during the interactions, were compiled and summarized into an internal report for our team. We had initially planned to have more users come in, but found that feedback on the limitations of the technology was consistent and addressable enough for us to make adjustments that would allow us to improve services and collect more nuanced data moving forward. For example, it was clear that the software varied so drastically that, in order to provide safe and effective services, it would be necessary to index the features and capabilities of various VR experiences.

The timing of this work was crucial, as we were a year away from the move to our new space, and the findings from the study helped us plan for it. The LCDSS is significantly larger than the DSC, and much more visible. However, while it has required that we re-envision our service policies and programming, it has also given us the opportunity to integrate accessibility into our work from the beginning. One way we are doing this is by developing an auditing workflow that would allow any staff member or student worker to examine newly-licensed VR experiences and produce an accessibility report, as there is a glaring lack of Voluntary Product Accessibility Templates (VPAT) for VR products. These reports would detail accessibility concerns and limitations at the beginning, allowing us to better serve disabled patrons. We are also working with the university’s central Information Technology Services to look at how this can be incorporated into broader LCDSS purchasing practices and documentation workflows.

Once this workflow is finalized, it will be used to support LCDSS staff in aiding faculty and researchers in the development of Equally Effective Alternative Access Plans (EEAAP) for their research and teaching. An EEAAP documents how a technology will be used in a class or program, its accessibility barriers, the plan to ensure equitable participation for disabled people, and the parties responsible for ensuring the plan is carried out. LCDSS staff frequently consult with faculty who wish to integrate LCDSS resources into their pedagogical practices. This can include feedback on assignment structure and design, recommended technologies, and other vital information required for pedagogical efficacy. By generating accessibility reports that identify technical limitations, LCDSS staff can aid faculty in developing multimodal approaches to integrating these technologies into their teaching. This means that, not only are we bringing accessibility to their attention early, but that we are also able to guide them and reduce intimidation, making buy-in more successful. Moving forward, Jordan Hample and I will be making all materials involved in this workflow publicly available, as well as continuing and expanding user testing to include other disabilities.

VR at the University of Oklahoma Libraries, Emerging Technologies Program

Accessibility initiatives for VR at the University of Oklahoma have followed a slightly different trajectory than the one outlined by Jasmine in the previous section. The VR program at OU Libraries was officially launched in 2016 in the Innovation @ the EDGE Makerspace, which began hosting classes and integrating VR content into the course curriculum, including initial integrations within biology, architecture, and fine arts courses (Cook and Lischer-Katz 2019). We use custom-built VR software that enables users “to manipulate their 3D content, modify environmental conditions (such as lighting), annotate 3D models, and take accurate measurements, side-by-side with other students or instructors” and support networked, multiuser VR sessions, which forms “a distributed virtual classroom in which faculty and students in different campus locations [are able to] teach and collaborate” (Cook and Lischer-Katz 2019, 73). Librarians provide VR learning opportunities in three main ways: 1) deployment in the library-managed makerspace; 2) facilitated course integrations; 3) special VR events. Each approach requires different levels of support and planning from librarians. In the case of deployment in our makerspaces, students are able to learn about the technology in a self-directed manner, with guidance from trained student workers who staff the space. Workshops and orientation sessions are available, and students, faculty, and community members typically drop in when they want and engage with technology in a self-directed manner. Since the focus of this space is on self-directed learning and experimentation, the training of student support staff is essential for ensuring that the space feels welcoming and inclusive to visitors and that staff are able to adjust the level of support they provide based on the needs of the visitors to the space.

In the case of course integrations, students are typically brought to our makerspace during regularly scheduled class time. We have portable VR kits that use high-powered gaming laptops and Oculus Rift headsets, which makes it possible to bring the learning experiences directly into the classroom if the faculty member prefers. Examples of VR-based classroom activities include interacting with 3D models that simulate learning objects, such as examining the morphology of different hominid skull casts in an anthropology class or analyzing complex protein structures and processes in a biochemistry class. VR is also used in other classes as a creative tool, such as in a sculpture course in which the students created sculptures in VR and then printed them using the 3D printers in the makerspace. In planning VR course integrations, librarians work directly with faculty members to design activities that will support their course learning objectives.

VR is also used frequently at OU Libraries for special events in which experts lead participants on guided tours through scholarly, high-resolution 3D models. Participants can join the VR tour on campus or from other institutions, since our custom-built VR software supports networked, multi-user sessions. Examples include inviting an archaeologist to lead a group through a 3D scan of a cave filled with ancient rock carvings that is located in the Southwestern United States (Schaffhauser 2017), as well as a tour led by a professor of Middle Eastern History through a 3D model of the Arches of Palmyra, located in Syria.

From the start of the emerging technologies initiative at OU Libraries, rapid innovation was a guiding principle, with the hope that the benefits of emerging technologies could be demonstrated to the broader campus community and that the library could become a hub for supporting emerging technologies across campus. It was important to quickly develop a base of VR technologies and librarian skills in order to promote the potential benefits of the technologies to faculty and students across campus. Starting in January 2016, students and faculty began using our VR spaces for research, learning, experimentation, and entertainment, and by 2018 we had faculty from over 15 different academic departments across campus using VR as a component in their classes (Cook and Lischer-Katz 2019), along with over 2000 individual uses of our VR workstations. By 2019, the emerging technology librarians (ETL) unit had grown to five full-time staff members who worked together to “rapidly prototype and deploy educational technology for the benefit of a range of University stakeholders” (Cook and Van der Veer Martens 2019, 614). At this time, concerns were raised by one of our ETLs about the accessibility of existing VR services and the ETL team brought in an accessibility specialist to advise them. One of the key challenges the team identified through the process of reviewing their existing VR capabilities was the fact that most commercially produced VR software lacks accessibility options, particularly in terms of compatibility with assistive devices. In reviewing users’ experiences in our makerspace, ETLs found that users with dexterity, coordination, or mobility disabilities often request passive VR experiences that provide immersive experiences without the need for use of the VR controller inputs. For programs such as the popular Google Earth VR program, it is not currently possible to provide users with passive experiences, rather the user needs to be able to actively control the two VR controllers themselves to engage with the VR experience. To the team’s surprise, some of the lower-resolution, untethered VR systems, such as the Oculus Go have shown more capabilities for providing passive experiences that rely only on head tracking and the use of target circles for movement through the VR space. Making narrated and guided tours for a VR experience available is essential for providing access to some groups of disabled users. Ensuring that VR controllers are accessible has also been a challenge and ETLs have begun experimenting with 3D printing add-on components to make the VR controllers more usable for users with limited hand function. In response to the lack of accessibility options for commercial software releases, modifications were made to OU’s custom-built VR software to provide accessibility capabilities, including: 1) controls for changing the sensitivity of VR interface controls; and 2) options for user interface text resizing. These modest modifications were made in consultation with VR users. Technical solutions alone are not sufficient, of course, and the ETL team has also found it very important to continue to improve training for student staff so that they are prepared to properly assist disabled users in a sensitive and respectful way. Communicating clearly to the wider university community about what accessible software and hardware capabilities are available is also a challenge that the team is tackling. These activities are still ad hoc in many ways, and we have found that additional work is needed to develop procedures for addressing VR accessibility in a more systematic way in the library and across campus.

The ETL team is taking several approaches to improving our support for accessible VR, looking outward to resources beyond the walls of OU Libraries and looking inward to resources at the university to support improvements to accessibility. ETLs are expanding their knowledge base through involvement in accessibility conferences and working groups and looking to our colleagues at other institutions, such as Temple University Libraries, for guidance on policies and procedures for evaluating and implementing VR software and hardware. The ETL team is planning on conducting future usability testing and focus groups with a range of disabled users from the OU community in order to further refine the feature set of our custom software, which we plan to package and distribute for other institutions to use and build upon.

The experiences of ETLs at OU Libraries point to the importance of working with accessibility experts and bringing disabled users into the design process to develop technologies and policies. Librarians should not be expected to take on accessible design by themselves, rather they should look to experts in this field for assistance. Working with our University’s disability coordinator has been essential for helping us to identify areas where we need to improve our accessibility capabilities, as well as providing us with a network of disabled users on campus who could provide us with user feedback on our technologies. The types of issues we are looking into include techniques for auditing VR software for accessibility issues, providing clearer signage and information on websites to provide students and faculty with a clear understanding of which emerging technology tools are accessible and what accommodations are possible, and ways in which we can continue to improve staff training so that the student workers who staff our makerspace can better support disabled users. The process of developing policies and establishing processes and documentation to support those policies does take time; however, this work has been essential for training staff and establishing best practices at our makerspace in order to address the challenges of VR accessibility. Additional work is necessary to codify this ongoing and still experimental work into institutional policy documents and continue to seek out adaptive tools to make VR accessible for a greater range of library patrons.

Conclusion

The current wave of immersive technologies was not initially designed for users with varying levels of visual, auditory, mobility, and neurological capabilities. Even for libraries and centers that do have development support there is no way to remediate the inaccessibility of every experience used and, even if there was, there would be no way to keep up with the regular updates of hardware and software. One-off, localized solutions cannot replace structural change. In order for VR to become an accessible medium, developers, hardware manufacturers, distribution platforms, and other stakeholders involved in its creation and distribution need to ensure accessibility within their respective roles. The current lack of support from these stakeholders makes it crucial that library staff and the educators that they support understand disability and accessibility, develop appropriate documentation, and advocate for software and hardware vendors to provide better accessibility support in their products. In the meantime, libraries supporting different tiers of VR use and investment will have to consider different approaches to accessibility.

The preceding examples drawn from our experiences at Temple University and the University of Oklahoma (OU) show the range of issues facing accessible VR, but also show the differences in approach for different service models and pedagogical objectives. Temple University includes VR in a very broad suite of technical offerings and its faculty are not currently at the phase of “buy-in” where regular VR development is a priority. As a result, Temple’s focus is on indexing experiences and integrating alternative access plans, with accessible development occurring on a smaller scale. In comparison, OU has much more of a demand for custom-developed software solutions. This demand is due to the fact that one of the main VR applications that OU promotes for course integrations is its own flexible, custom software, which supports a variety of disciplines, including courses in biochemistry, anthropology, architecture, and English. OU is beginning to investigate the accessibility challenges of working with commercial software and is looking to Temple for guidance on how to properly evaluate different software titles and provide adequate documentation. For libraries without developer support, we can expect that the focus will more likely follow Temple’s approach. For libraries with regular development efforts, supporting home-grown accessible design practices, such as those at OU, will be more of a central activity. Some libraries will be a mixture of the two, working to blend commercial and homegrown solutions. Regardless of a library’s approach, the major takeaways for other institutions to consider as they bring accessibility thinking into their VR programs include:

  • Plan for Accessibility from the Beginning: Libraries can save time and resources by thinking about accessibility issues at the start of a program or project.
  • Lack of Standards: As of 2020, there are no standards for accessible VR design, but there are related standards that could lay the groundwork for their development.
  • Developer Support is Essential: Libraries that intend to develop VR experiences need to have sufficient developer support with accessibility expertise.
  • Importance of Auditing and Reporting: Out-of-the-box VR experiences will pose different accessibility challenges from one person to the next and should be audited to better understand these barriers to access. If a library lacks a developer to modify software or create new software, at the very least, available software needs to be audited and have a corresponding accessibility report produced.
  • VR is Not the Pedagogy: VR should be another tool in an educator’s arsenal, not the sole focus of a class (unless VR is the course subject). As Fabris et al. (2019) suggest “Having VR for the sake of having VR won’t fly; the VR learning resources need to be built with learning outcomes in mind and the appropriate scaffolds in place to support the learning experience” (74).
  • Acknowledge the Limits of VR Accessibility: There are limits to making VR accessible. The reality is that there will be students who are unable to use VR for a variety of reasons. Therefore, there should always be an alternative access plan developed so that students have access to non-VR learning methods as well.

Considering these best practices will better enable libraries to approach the challenges of making VR accessible. Putting them into action will directly benefit disabled users, improve librarians’ abilities to make their innovative technology spaces more inclusive, and will help administrators to better plan and allocate resources for supporting the missions of their institutions. While these guidelines are focused on supporting academic libraries, they will likely benefit higher education applications outside of the library, too.

Additionally, while it is true that there is extensive work to be done, there are existing inclusive instructional approaches that can be integrated into VR based coursework by individuals. Multimodal course design and Universal Design for Learning (http://udloncampus.cast.org/page/udl_about) are frameworks that can be applied to VR coursework with approaches like collaborative assignments and activities. It is also worth reviewing a 2015 special issue of Journal of Interactive Technology and Pedagogy that considers the benefits of introducing perspectives from disability studies into the context of designing innovative pedagogies. One of the important takeaways from this collection is that embracing disability and the alternative perspectives that it can provide, presents the potential for new learning opportunities (Lucchesi 2015).

Regardless of whichever pedagogical approach educators adopt, it is imperative that, unless VR is the subject of the course, they remember it is not the pedagogy. Instead, faculty should keep a diverse array of tools in their pedagogical toolkit that will support an equally diverse set of learners. As librarians, faculty, and instructional designers become familiar with inclusive learning frameworks, they are better positioned for more targeted, meaningful advocacy within their institutions. Because, while it is true that there is a lot of work to be done, it is equally true that it can only be done together through active involvement in institutional committees and task forces and by ensuring that discussions about accessibility occur in strategic planning and budgeting meetings with administrators. Accessibility awareness needs to be raised throughout libraries and other academic institutions so that the accessibility challenges of emerging technologies are addressed at the design stage and built into pedagogical implementations from the beginning. This will help to ensure that pedagogies founded on emerging technologies will be “born accessible,” for the benefit of learners and educators throughout the academic world.

Notes

[1] The use of identity-first (“disabled person”) vs. person-first (“person with disabilities”) language is debated. Disability is a complex set of identities and the language used should take into account the preferences of disabled people and other contextual factors. Our choice to use identity-first language is a conscious one.

[2] A library residency is a term position during which residents may rotate through different functional areas of the library or focus on one subject area, and often contribute to projects and initiatives at their host library to gain professional (vs. paraprofessional) experience.

Bibliography

Abhishek, Seth, Judy M. Vance, and James H. Oliver. 2011. “Virtual Reality for Assembly Methods Prototyping: A Review.” Virtual Reality 15, no. 1: 5–20.

Azenkot, Shiri, Larry Goldberg, Jessie Taft, and Sam Soloway. 2019. XR Symposium Report. https://docs.google.com/document/d/131eLNGES3_2M5_roJacWlLhX-nHZqghNhwUgBF5lJaE/edit?usp=sharing.

Bronack, Stephen, Amy L. Cheney, Richard Reidl, and Johan Tashner. 2008. “Designing Virtual Worlds to Facilitate Meaningful Communication: Issues, Considerations, and Lessons Learned.” Technical Communication 55, no. 3: 261–69.

Carr, Diane, Martin Oliver, and Andrew Burn. 2010. “Learning, Teaching and Ambiguity in Virtual Worlds.” In Researching Learning in Virtual Worlds, edited by Anna Peachey, Julia Gillen, and Daniel Livingstone, 17–31. London: Springer.

Chavez, Bayron and Sussy Bayona. 2018. “Virtual Reality in the Learning Process.” In Trends and Advances in Information Systems and Technologies, edited by Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis and Sandra Costanzo, 1345–56. Cham, Switzerland: Springer International Publishing, https://doi.org/10.1007/978-3-319-77712-2_129.

Cook, Matt and Betsy Van der Veer Martens. 2019. “Managing Exploratory Units in Academic Libraries.” Journal of Library Administration, 59, no. 6: 606–28. http://doi.org/10.1080/01930826.2019.1626647.

Cook, Matt and Zack Lischer-Katz. 2019. “Integrating 3D and VR into Research and Pedagogy in Higher Education.” In Beyond Reality: Augmented, Virtual, and Mixed Reality in the Library, edited by Kenneth Varnum, 69–85. Chicago: ALA Editions.

Cruz-Neira, Carolina, Daniel J. Sandin, Thomas A. DeFanti, Robert V. Kenyon, and John C. Hart. 1992. “The CAVE: Audio Visual Experience Automatic Virtual Environment.” Communications of the ACM 35, no. 6: 64–73.

Deutschmann, Mats, Luisa Panichi, and Judith Molka-Danielsen. 2009. “Designing Oral Participation in Second Life: A Comparative Study of Two Language Proficiency Courses.” ReCALL 21, no. 2 (May): 206–26.

Donalek, Ciro, George Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler, S. Yeh, et al. 2014. “Immersive and Collaborative Data Visualization Using Virtual Reality Platforms.” In Proceedings of 2014 IEEE International Conference on Big Data, Washington, DC, Oct. 27–30, 609–14.

Ellis, Barrie, Gareth Ford-Williams, Lynsey Graham, Dimitris Grammenos, Ian Hamilton, Headstrong Games, Ed Lee, Jake Manion, and Thomas Westin. n.d. “Game accessibility guidelines.” Game accessibility guidelines. Accessed Dec. 13, 2019. http://gameaccessibilityguidelines.com/.

Enamorado, Sofia. 2019. “The CVAA & Video Game Accessibility.” 3Play Media. https://www.3playmedia.com/2019/03/18/the-cvaa-video-game-accessibility/.

Fabris, Christian, Joseph Rathner, Angelina Fong, and Charles Sevigny. 2019. “Virtual Reality in Higher Education.” International Journal of Innovation in Science and Mathematics Education 27: 69–80.

Holmberg, Kim and Isto Huvila. 2008. “Learning Together Apart: Distance Education in a Virtual World.” First Monday 13, no. 10 (October). https://firstmonday.org/article/view/2178/2033.

Jaeger, Paul T. 2018. “Designing for Diversity and Designing for Disability: New Opportunities for Libraries to Expand Their Support and Advocacy for People with Disabilities.” The International Journal of Information, Diversity, & Inclusion 2, no. 1–2: 52–66.

Jang, Susan, Jonathan M. Vitale, Robert W. Jyung, and John B. Black. 2017. “Direct Manipulation is Better than Passive Viewing for Learning Anatomy in a Three-dimensional Virtual Reality Environment.” Computers & Education 106: 150–65.

Johnson-Glenberg, Mina C. 2018. “Immersive VR and Education: Embodied Design Principles that Include Gesture and Hand Controls.” Frontiers in Robotics and AI 5, art. 81 (July): 1–19, http://doi.org/10.3389/frobt.2018.00081.

Johnston, Elizabeth, Gerald Olivas, Patricia Steele, Cassandra Smith and Liston Bailey. 2018. “Exploring Pedagogical Foundations of Existing Virtual Reality Educational Applications: A Content Analysis Study.” Journal of Educational Technology Systems 46, no. 4: 414–39. https://doi.org/10.1177/0047239517745560.

Kersten-Oertel, Marta, Sean Jy-Shyang Chen, and D. Louis Collins. 2014. “An Evaluation of Depth Enhancing Perceptual Cues for Vascular Volume Visualization in Neurosurgery.” IEEE Transactions on Visualization and Computer Graphics 20, no. 3: 391–403.

Laha, Bireswar, Doug A. Bowman, and John J. Socha. 2014. “Effects of VR System Fidelity on Analyzing Isosurface Visualization of Volume Datasets.” IEEE Transactions on Visualization & Computer Graphics 4: 513–22.

Laurent Clerc National Deaf Education Center. 2015. “Working with Interpreters.” Gallaudet University. https://www3.gallaudet.edu/clerc-center/info-to-go/interpreting/working-with-interpreters.html.

Lischer-Katz, Zack, Matt Cook, and Kristal Boulden. 2018. “Evaluating the Impact of a Virtual Reality Workstation in an Academic Library: Methodology and Preliminary Findings.” In Proceedings of the Association for Information Science and Technology Annual Conference, Vancouver, Canada, Nov. 9–14, 300–8. https://hdl.handle.net/11244/317112.

Lucchesi, Andres. 2015. “Introduction to Special Issue: Disability Studies Approaches to Pedagogy, Research, and Design.” Journal of Interactive Technology & Pedagogy 8. https://jitp.commons.gc.cuny.edu/category/issues/issue-eight/.

Lund, Brady D. and Ting Wang. 2019. “Effect of Virtual Reality on Learning Motivation and Academic Performance: What Value May VR Have for Library Instruction?” Kansas Library Association College and University Libraries Section Proceedings 9, no. 1: 1–7. https://doi.org/10.4148/2160-942X.1073.

Milovanovic, J. 2017. “Virtual and Augmented Reality in Architectural Design and Education.” In Proceedings of the 17th International Conference, CAAD Futures, Istanbul, Turkey, July. https://www.researchgate.net/publication/319665970_Virtual_and_Augmented_Reality_in_Architectural_Design_and_Education_An_Immersive_Multimodal_Platform_to_Support_Architectural_Pedagogy.

Mirza, Rafia and Maura Seale. 2017. “Who Killed the World? White Masculinity and the Technocratic Library of the Future.” In Topographies of Whiteness: Mapping Whiteness in Library and Information Science, edited by Gina Schlesselman-Tarango, 171–97. Sacramento, CA: Library Juice Press. http://mauraseale.org/wp-content/uploads/2016/03/Mirza-Seale-Technocratic-Library.pdf

Mott, Martez, Ed Cutrell, Mar Gonzalez Franco, Christian Holz, Eyal Ofek, Richard Stoakley, and Meredith Ringel Morris. 2019. “Accessible by Design: An Opportunity for Virtual Reality.” ISMAR 2019 Workshop on Mixed Reality and Accessibility. https://www.microsoft.com/en-us/research/publication/accessible-by-design-an-opportunity-for-virtual-reality/.

Ni, Tao, Doug A. Bowman, and Jian Chen. 2006. “Increased Display Size and Resolution Improve Task Performance in Information-rich Virtual Environments.” In Proceedings of Graphics Interface, Quebec City, Canada, June 7–9 139–46.

Nicholson, Karen P. 2015. “The McDonaldization of Academic Libraries and the Values of Transformational Change.” College & Research Libraries 76, no. 3: 328–338. http://doi.org/10.5860/crl.76.3.328.

Patterson, Brandon, Tallie Casucci, Thomas Ferrill and Greg Hatch. 2019. “Play, Education, and Research: Exploring Virtual Reality through Libraries.” In Beyond Reality: Augmented, Virtual, and Mixed Reality in the Library, edited by Kenneth J. Varnum, 47–56. Chicago: ALA Editions.

Pober, Elizabeth E. and Matt Cook. 2016. “The Design and Development of an Immersive Learning System for Spatial Analysis and Visual Cognition.” In Proceedings of 2016 Conference of the Design Communication Association, Bozeman, MT, https://static1.squarespace.com/static/532b70b6e4b0dca092974dbe/t/5755e2df20c647f04c95598a/1465246433366/pobercook_text+%281%29.pdf.

Prabhat, Andrew Forsberg, Michael Katzourin, Kristi Wharton, and Mel Slater. 2008. “A Comparative Study of Desktop, Fishtank, and CAVE Systems for the Exploration of Volume Rendered Confocal Data Sets.” In IEEE Transactions on Visualization and Computer Graphics 14, no. 3 (May-June): 551–63.

Praslova–Førland, Ekaterina, Alexei Sourin, and Olga Sourina. 2006. “Cybercampuses: Design Issues and Future Directions.” Visual Computer 22, no. 12: 1015–28.

Radianti, Jaziar, Tim A. Majchrzak, Jennifer Fromm, and Isabell Wohlgenannt. 2020. “A Systematic Review of Immersive Virtual Reality Applications for Higher Education: Design Elements, Lessons Learned, and Research Agenda.” Computers & Education 147: 1–29. https://doi.org/10.1016/j.compedu.2019.103778.

Ragan, Eric D., Regis Kopper, Philip Schuchardt, and Doug A. Bowman. 2013. “Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small-scale Spatial Judgment Task.” IEEE Transactions on Visualization and Computer Graphics 19, no. 5: 886–96.

Schaffhauser, Dian. 2017. “Multi-campus VR Session Tours Remote Cave Art.” Campus Technology, (October 9). https://campustechnology.com/articles/2017/10/09/multi-campus-vr-session-tours-remote-cave-art.aspx

Schneider, Sven, Saskia Kuliga, Christoph Hölscher, Ruth Conroy-Dalton, André Kunert, Alexander Kulik, and Dirk Donath. 2013. “Educating Architecture Students to Design Buildings from the Inside Out.” In Proceedings of the 9th International Space Syntax Symposium, edited by Y.O. Kim, H.T. Park and K.W. Seo, Seoul, Korea. https://www.researchgate.net/profile/Saskia_Kuliga/publication/281839210_Educating_Architecture_Students_to_Design_Buildings_from_the_Inside_Out_Experiences_from_a_Research-based_Design_Studio/links/55faa73c08aeba1d9f36bb64/Educating-Architecture-Students-to-Design-Buildings-from-the-Inside-Out-Experiences-from-a-Research-based-Design-Studio.pdf.

Temple University Libraries. n.d. “Loretta C. Duckworth Scholars Studio.” Temple University Libraries. Accessed Dec. 13, 2019. https://library.temple.edu/lcdss.

U.S. Department of Education, National Center for Education Statistics. 2019. Digest of Education Statistics, 2017 (2018–070), https://nces.ed.gov/fastfacts/display.asp?id=60.

U.S. General Services Administration. n.d. “About Us.” Section508.gov, GSA Government-wide IT Accessibility Program. Accessed Dec. 13, 2019. https://www.section508.gov/about-us.

Ware, Colin and Peter Mitchell. 2005. “Reevaluating Stereo and Motion Cues for Visualizing Graphs in Three Dimensions.” In Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, 51–8. http://doi.org/10.1145/1080402.1080411.

W3C. 2019. “Inclusive Design for Immersive Web standards.” W3C. https://www.w3.org/2019/08/inclusive-xr-workshop/.

W3C Web Accessibility Initiative. 2019. “Making the Web Accessible.” Web Accessibility Initiative. https://www.w3.org/WAI/.

W3C Web Accessibility Initiative. 2019. “Web Content Accessibility Guidelines (WCAG) Overview.” Web Accessibility Initiative. https://www.w3.org/WAI/standards-guidelines/wcag/.

Wentz, Brian, Paul T. Jaeger, and Jonathan Lazar. 2011. “Retrofitting Accessibility: The Legal Inequality of After–the–fact Online Access for Persons with Disabilities in the United States.” First Monday 16, no. 11 (November). https://firstmonday.org/ojs/index.php/fm/article/view/3666/3077.

Wiegand, Wayne A. 1999. “Tunnel Vision and Blind Spots: What the Past Tells Us about the Present; Reflections on the Twentieth-Century History of American Librarianship.” The Library Quarterly 69, no. 1: 1–32.

Winner, Langdon. 1986. The Whale and the Reactor: A Search for Limits in an Age of Technology. Chicago: University of Chicago Press.

Wong, Alice, Hannah Gillis, and Ben Peck. 2018. “VR Accessibility: Survey for People with Disabilities.” Disability Visibility Project & ILMxLAB. https://drive.google.com/file/d/0B0VwTVwReMqLMFIzdzVVaVdaTFk/view.

Zhao, Yuhang, Edward Cutrell, Christian Holz, Meredith Ringel Morris, Eyal Ofek, and Andrew D. Wilson. 2019. “SeeingVR: A Set of Tools to Make Virtual Reality More Accessible to People with Low Vision.” In Proceedings of CHI 2019, Glasgow, Scotland, May 4–9. http://doi.org/10.1145/3290605.3300341.

About the Authors

Jasmine Clark is the Digital Scholarship Librarian at Temple University. Her primary areas of research are accessibility and metadata in emerging technology and emerging technology centers. Currently, she is co-leading The Virtual Blockson, a project to recreate the Charles L. Blockson Afro-American Collection in virtual reality, while also doing research on 3D metadata and the development of Section 508 compliant guidelines for virtual reality experiences. Jasmine has experience in a variety of functional areas and departments, including metadata, archives, digital scholarship, and communications and development. She is interested in the ways information organizations can integrate accessible, inclusive practices into their services, hiring, and management practices.

Zack Lischer-Katz is a postdoctoral research fellow at University of Oklahoma Libraries. From 2016 to 2018 he was a Council on Library and Information Resources (CLIR) Postdoctoral Fellow. He employs qualitative-interpretive methodologies to examine visual information preservation and curation in information institutions, with a focus on complex data types, such as virtual reality, 3D, and audiovisual formats. His research has appeared in Library Trends, International Journal of Digital Curation, Information Technology and Libraries, and First Monday. He received his PhD in Communication, Information, & Library Studies from Rutgers University and his MA in Cinema Studies from New York University.

Establishing a New Paradigm: the Call to Reform the Tenure and Promotion Standards for Digital Media Faculty

James Richardson, LaGuardia Community College

Abstract

The challenges facing tenure-track faculty in the areas of digital technology are unique. The relative infancy of web and multimedia technology has created an unexpected quandary for digital scholars teaching within academia. In many cases, these teachers are the vanguard for the movement to educate students and faculty across disciplines in how to best utilize new technology in the academic, artistic, and economic sectors of society. Until now, professors teaching in the area of digital technology have been traditionally judged by the liberal arts definition of scholarship. However, in the case of new and evolving fields of study, there are alternative criteria that would be better suited for the digital disciplines, and would serve as a more accurate assessment on the quality of faculty scholarship as they march towards tenure, promotion and reappointment. Under the current system there are numerous institutional biases and obstructions that unnecessarily complicate the pathway to tenure and promotion for faculty working with technology. If digital scholars are going to advance within the academy, the existing tenure and promotion system must be redefined and expanded to include a more
modern definition of intellectual excellence.
 

 

There is a growing risk that the academy will begin to seem irrelevant if it continues to underestimate the cultural and technological shifts taking place all around us. The sharp divide in academia over the nature of what constitutes tenure-worthy digital scholarship cannot be universally defined without updating the current peer-review system. In “Tenure in a Time of Confusion,” historian Paula Petrik states that the most pressing questions involving digital scholarship are “who will review digital projects, what criteria should be used to evaluate multimodal scholarship, and what skills and qualifications should the reviewers of digital research possess?” (Cheverie, Boettcher, and Buschman 2009, 224).

The key dilemma in assessing digital scholarship is that many academics, who have direct responsibility for setting standards under which digital practitioners are judged, are not technically conversant with and remain largely unaware of the distinctive training and discipline-specific research that is required to effectively excel in these fields (Cross 2008, 2). In fact, most committees responsible for evaluating candidates for tenure and promotion have historically been populated with senior faculty members from traditional non-technical disciplines. As a result, it can be difficult for some conventional scholars to appraise the academic merit of work from disciplines that did not exist twenty years ago (Jaschik 2009). More to the point, in many cases we are asking those tasked with setting standards for multimedia-based research to create fair and impartial rubrics to assess the quality of non-traditional faculty scholarship when they do not adequately understand the technologies and the industries from which these digital professionals have originated. Even in cases where committee members may have a background in digital fields, the predominant attitude in the academy is that digital projects are inferior to publications in peer-reviewed scholarly journals, and should be viewed with some skepticism as to their merit as scholarship (Cheverie et al. 2009, 220).

In the most recent attempt to address the need to establish standards for digital scholarship, the Modern Language Association (MLA) takes the explicit position in its 2012 Guidelines for Evaluating Work in the Digital Humanities and Digital Media that institutions of higher education that “recruit or review scholars working in digital media or digital humanities must give full regard to their work when evaluating them for reappointment, tenure, and promotion” (MLA 2012, 3). In addition to this basic request for broadening the definition of what constitutes digital scholarship, the new MLA guidelines highlight several areas in which institutions and digital practitioners can more effectively set the stage for fair and equitable assessment of multimodal scholarship. Or, to state it more succinctly, institutions of higher education need to create more open standards for evaluating scholarship that blend diverse forms of media as well as evolving technological methods to deliver that scholarship.

Many of the MLA’s proposed solutions call for institutions to improve communications between governing bodies and digital practitioners by clearly documenting scholarship expectations at the beginning of the hiring process and crafting discipline-specific guidelines for faculty producing digital scholarship so that they “can be adequately and fairly evaluated and rewarded” (MLA 2012, 1). The recommendations also call for engaging other digital experts, internal and external to the institution, at key review intervals to define what constitutes exceptional digital work, and to respect that work by viewing and assessing it within the medium for which it was created. Essentially the MLA is advocating that tenure and promotion committees should be discouraged from evaluating multimedia and web-based work by asking the faculty member to reproduce it in printed format. They are requesting that digital artifacts be reviewed only within their original digital media.

In the case of individual digital practitioners entering the tenure system, the MLA advocates that scholars be mindful of the emerging nature of their fields and negotiate at the start of their service the methods by which they will be assessed (MLA 2012). In short, the MLA is asking digital scholars to become fully engaged in their careers by taking a proactive stance in negotiating their responsibilities and methods of assessment, documenting their successes in regard to the impact that their work has on the furtherance of multimodal studies, and making use of all available institutional supports to maximize the opportunities for fair scholarly evaluation.

While the MLA should be commended for being one of the few professional organizations bold enough to buck the traditional academic evaluation system and to take on the task of laying the groundwork for the future assessment of digital scholarship, the guidelines they are proposing stop short of offering specific criteria that can immediately be applied to improve the tenure and promotion process for digital scholars currently in the system. Many of the suggestions put forth by the MLA speak to the future while ignoring the present challenges facing digital practitioners. While it is understandable that the fast moving and fluid landscape of digital disciplines makes it difficult for any organization to craft guidelines to cover all contingencies, one underlying problem facing the academy is that unless immediate changes are made there is a strong possibility that many of the current generation of digital educators could leave traditional institutions of higher education and not return.

The New Paradigm: Immediate Solutions

Until now, faculty members teaching in digital disciplines such as web development and interactive design have traditionally been judged by liberal-arts definitions of scholarship. In most cases, this definition has been limited to whether or not the candidates for tenure or promotion have published articles in double-blind peer-reviewed journals. There is a significant limitation in applying the academy’s existing reliance on peer-reviewed journals to the digital media in that, compared to other long-established fields, there is a lesser number of refereed publications universally dedicated to the field (Ippolito, Blais, Smith, Evans, and Stormer 2009). The limited number of digital media–specific journals can also present a professional stumbling block for digital faculty looking to advance through the ranks of the professoriate. The lack of appropriate publishing venues for their work can compel digital academics to seek opportunities to publish in journals external to their fields of expertise and place them in direct competition, and at a great disadvantage, with authors from non-digital disciplines.

To address this need for change in the current tenure and promotion process, there are several benchmarks that can be immediately applied to provide a more balanced approach toward evaluating the multimodal scholarship of digital practitioners. The suggestions offered in this article to improve the system of tenure, reappointment, and promotion could easily be implemented for digital practitioners currently in the tenure pipeline.

Step 1: acknowledge the distinctions between production and research degrees

Part of the reason that digital practitioners find themselves in difficulty during the tenure and promotion process is that they have not successfully advocated for greater latitude in what constitutes scholarly activities. This includes being clear about various and often subtle subcategories within multimodal studies, most notably the distinction between digital humanities and digital media. The academic delineation between these two new fields is usually lost on many contemporaries from non-technical academic fields. To further complicate matters, the cross-disciplinary nature of these new academic fields has made the lines of demarcation between them significantly less precise. Since both fields are at their cores driven by, or at least defined by developing technologies, it can be easy for traditional academic colleagues to confuse the two. Nevertheless, the differences between the areas of expertise are real and can require different methods of assessment in regard to scholarly production by faculty in each field.

Faculty members teaching in the digital humanities are generally from the liberal arts and social sciences where they study the theoretical effects of technology from a cultural and pedagogical standpoint. These instructors are less involved with the technical inner workings of systems, software, and hardware and are more focused on how the technology can be, and is, used in society and in the classroom. As an example, consider a history professor within the digital humanities, who can, without being able to program an interactive application on the steam powered train engine, utilize existing software to create a multimedia presentation to illustrate how the development of the railroad helped to transform the early American economy. While there are a growing number of academics, like University of Nebraska scholar Stephen Ramsay, who believe that digital humanists (“DHers”) must be able to code and build multimodal artifacts (Gold 2012, 3), there are many DHers who are not required to have the system design skills necessary to educate students on the impact and educational uses of new technologies. Over time as digital convergence continues to blur the lines between the theory and production, this will become less and less true. However, at the present time, the academic responsibilities of digital humanists and media technologists can be somewhat different.

Educators within the field of digital media frequently originate in the visual arts or computer information systems disciplines. They are called upon to teach students how to create and implement systems, software, or hardware from the design phase all the way through the physical conception of new technology. Consequently, it is absolutely essential that these educators are experienced in building digital artifacts and systems in the course of their duties. As opposed to digital humanists, digital media technologists are usually less concerned with the cultural and pedagogical impact of their discipline and mainly concentrate their efforts in assessing which technologies and creative processes offer the greatest opportunities for long-term high-tech innovation. These practitioners are generally more focused on educating students in the specific creative and technical skills necessary to plan and develop the next set of digital tools.

As we begin to discuss methods of evaluation, in the case of the digital humanities—where many professors have research-centric PhDs in traditional fields such as English, the social sciences, and even economics—the peer-reviewed article may be an appropriate base from which to begin to assess their academic scholarship. The work of organizations like the MLA has had a profound impact in prompting traditional publishing venues to recognize the increasing value of digital technologies in influencing humanistic inquiry. This work has helped to redefine the methods of scholarship for future digital humanists by fostering a number of new journals, such as Digital Humanities Now and the Journal of Digital Humanities, that recognize scholarly work beyond the traditional research article. These online and open-access peer-reviewed publications have aided educators who study the effects of technology from a cultural, economic, and pedagogical standpoint in presenting their research in true multimodal fashion. The web-based nature of these new journals has created an environment where the work of digital humanists can move beyond the purely textual to a more visual and technologically dynamic presentation.

Conversely, the educators teaching in the field of digital media commonly have terminal degrees with a more production-centric focus resembling Master of Fine Arts (MFA). The degrees earned by these academics generally concentrate less on the traditional ability to research and write and place greater emphasis on the capacity to design or build new creations. For these practitioners, instead of using the peer-reviewed article or monograph as the evaluation standard, academic institutions could adopt measures more closely resembling the criteria utilized in evaluating professors in the visual and performing arts in which educators are required to develop and maintain professional portfolios of their work. That approach would allow a digital media scholar’s academic excellence and scholarly achievement to be determined by peers within their field through exhibition and critical portfolio evaluation. Since the concept of the professional portfolio has long been a foundation in creative fields, embracing this process to demonstrate digital practitioners’ command of their production discipline would be a natural extension and a more effective base from which to begin to evaluate their scholarship.

At LaGuardia Community College, where I am a faculty member in the humanities department, there are differing standards applied to the creative and the more traditional academic disciplines in regard to tenure, promotion, and reappointment. Faculty members from the creative and performing disciplines, such as theater and fine arts, have far more latitude in what constitutes scholarly achievement within their areas. They are not required to publish in refereed journals, but must instead provide scholarly evidence of their work through recognized gallery exhibitions and artistic reviews of their portfolio creations in appropriate publications. On the other hand, faculty members in more traditional academic disciplines within the humanities, such as philosophy, are strongly encouraged to follow the customary path of academic publishing in order to successfully move through the ranks of the professoriate. Another institution within the City University of New York system, Hostos Community College, has taken this process a step further by adopting clearly defined written guidelines that are specific to the departments and to the disciplines in which faculty members are being assessed. In their 2010 Guidelines for Faculty Evaluation, Reappointment and Tenure, posted on their website, the college not only outlines rubrics for judging faculty but also establishes the use of a portfolio in the overall process.

While the specific methods of scholarly valuation outlined above may be appropriate for digital humanists and digital media technologists, these approaches should merely be a starting point for assessment and not the only, or even primary, system for measuring academic achievement. The digital convergence that is taking place in information technology has affected institutions of higher education. Depending upon the university in question, faculty members in digital programs can be drawn together from multiple disciplines, both technical and non-technical, to constitute new digital media departments or programs. It is not uncommon for instructors with backgrounds in fields such as fine arts, film, theater, graphic design, information technology, photography, computer science, English literature, business, and law to comprise the core teaching staff of a digital media program (Ippolito et.al. 2009, 72). As a result, any department consisting of faculty members drawn from such diverse fields can pose difficulties for their tenure and promotion committees in determining the scholarly quality of a scholar whose academic work is within a singular academic discipline. In many instances, the qualifications for success within the various subfields of digital media can be so varied that applying a single assessment standard to digital scholarship becomes impractical. The predicament then facing academics engaging in digital media is that the cross-disciplinary nature of their work necessitates that they advocate for themselves to develop and frame the context of their creative work in a manner acceptable to tenure and promotion committees (Jaschik 2009).

Step 2: give greater recognition of professional development via industry certifications

In order to stay current with the technical advances that are affecting so many contemporary social and economic changes in the academy, educators in the digital disciplines are required to spend a great deal of their time updating and mastering new technologies. Ongoing training is necessary to enable the digital media faculty to bring evolving information into the classroom and to incorporate it into their traditional research and production work. This can be especially true for educators who have the responsibility for teaching production-centric courses that require a firm grasp of current versions of software, hardware, and technical procedures. However, under the current tenure and promotion system much of this ongoing research and training work to maintain competence with digital technologies is unfairly regarded as merely supplemental activity. While some may argue that evolution and changing standards occur in nearly every discipline, the rapid progression of technical innovation is especially concentrated within the digital disciplines as entirely new software, languages, and methods of development are adopted rapidly and repeatedly. These constant technical changes present a significant challenge for practitioners in the digital fields.

An effective way to address this disparity and credit digital practitioners for the constant technical preparation that is essential to their professional success would be to more fully credit the attainment of well-established industry certifications in the tenure and promotion process. Obtaining qualified certifications from established and valued organizations is a rigorous process in which educators must demonstrate both practical and theoretical expertise. Industry certifications from leading companies such as Microsoft, Apple, and Adobe can also provide external professional validation of faculty expertise in both the technical and creative disciplines. In addition, these companies offer specialized teacher certifications such as the Microsoft Certified Trainer (MCT), the Apple Certified Trainer (ACT), and the Adobe Certified Instructor (ACI) distinctions that not only evaluate a candidate’s mastery of the material but also appraise an educator’s ability to teach technical and creative subjects.

Companies offering accreditations have established their own set of rubrics for software and system development that identify the critical information candidates must master before they can be granted the designation of Certified Trainer or Instructor. In the case of the Adobe Certified Instructor, candidates must demonstrate expertise not only with various creative software packages but also distance learning and presentation software such as Adobe Connect and Presenter, both of which facilitate the development of e-learning content for digital distribution. Attaining these certifications can greatly benefit faculty members teaching production courses as they are introduced to vendor specific workflows that can be passed on to students to facilitate greater efficiency in producing digital content.

The Mozilla Foundation has started a recent trend in online certification and skill representation that has begun to gain traction in many educational and professional circles. The Open Badges initiative is an open source standard in which can be adopted by organizations to issue digital badges as a means to verify educational achievement or competency. The badges would be issued and backed by an organization or school to serve as a graphical certification of accomplishment that could be displayed on websites, social media networks, or traditional offline venues such as resumes. If the badges are supported by well-developed rubrics to substantiate effective instruction in the subject matter, these symbols could function as a powerful endorsement of technical or educational proficiency. Institutions such as Codeacademy, Peer to Peer University (P2PU), and the Carnegie Mellon Robotics Academy have already, or are currently, developing open badges as a way to acknowledge technical achievement.

For many years, tenure and promotion committees have struggled to evaluate intellectual work from disciplines outside of their areas of expertise. It is for this very reason that publishing in peer-reviewed journals has been the default method for determining the academic worth of a candidate for tenure or promotion. Laura Mandell, a Professor of English literature and chair of the MLA Information Technology Committee, has suggested that “a big part of the problem is that for the past 50 years, what people have done on promotion and tenure committees is to say ‘OK, this was accepted by Cambridge University Press. I don’t need to read it because I know it’s quality’” (Jaschik 2009, 1).

Committees have typically been able to “outsource” tenure and promotion decisions to peer-reviewed journals and rely on that process to vet the competence of fellow academics (Harley and Acord 2011). Unfortunately, this practice of evaluating by proxy can only be successful if there are established peer-reviewed journals within the field in question, or failing that, qualified authorities on tenure and promotion committees who can assess the work. What happens to this process when the scholarship that needs to be evaluated originates from a field like digital media where there are few peer-reviewed journals? Or in the case of the digital humanities where standards for publications are only just beginning to evolve to include multimodal artifacts? How can tenure and promotion committees be expected to serve the best interests of their institutions, as well as fairly evaluate faculty in digital disciplines, without the benefit of this specialized expertise? The answer is simply that they cannot. By expanding the number of external sources for evaluating technological excellence to include select industry certifications, tenure and promotion committees would be presented with additional and appropriate measures through which to vet candidates for advancement.

Step 3: give greater recognition to curriculum design and development

Just as instructors within digital humanities and digital media must maintain their skills through ongoing professional development, designing and updating course materials in a rapidly evolving technical field is also a time-consuming process that requires constant research and updating. Under the current tenure and promotion system, curriculum design is unfairly regarded as a supplemental activity and as of lesser value than the traditional printed article.

Faculty members who are designing innovative online courses in various disciplines are at the forefront of an entirely new method of student instruction. Hybrid and online courses, because of asynchronous interaction between teacher and student, require a different level of preparation and engagement by instructors. The interpersonal dynamics of the face-to-face classroom are radically altered when the interaction between student and teacher takes place in a virtual environment. As new forms of online education, most notably MOOCs (Massive Open Online Courses), are being adopted at a startling pace within both private sector and traditional academic circles, by essentially relegating this new area of curriculum development to auxiliary status in the tenure and promotion process, many institutions are setting a precedent that may cause future complications. The secondary status given to curriculum development, regardless of innovation, will help assure that only senior faculty with tenure will chance engaging in this new area of teaching and scholarship.

According to data released by the research firm Ambient Insight, the number of post-secondary students in the United States who will take some or all of their classes online is expected to climb sharply to more than 22 million by the year 2014. The CEO of Ambient Insight, Tyson Greer, has suggested that “the rate of growth in the academic segments is due in part to the success and proliferation of the for-profit online schools” (Nagel 2009, 2). Until recently there has been very little serious competition in the higher education arena for traditional academic institutions. Similar to many other industries, the introduction of technology, in this case online instruction, presents an opportunity for the significant digital disruption of higher education, especially if the curriculum development work of digital practitioners is not adequately recognized in their assessments by tenure and promotion committees and if the academy fails to provide incentives to academic curriculum designers to respond to the competitive threat from the private sector.

Step 4: give greater recognition to service supporting innovative uses of technology

Faculty with digital media expertise are in a unique position to educate students as well as faculty members in other disciplines in how best to utilize new technology in the academic, artistic, and economic sectors of society. As a result, colleges and universities are increasingly asking these educators to consult on and lead large-scale initiatives that benefit the institution. In many cases these educators are asked to serve in these highly specialized roles at a fraction of the price that an outside consultant would be paid. Even in cases where faculty members are helping to build, support, and promote pedagogical initiatives that enhance the reputation of the institution and numerous disciplines, the valuable services that they provide are rarely viewed as scholarship.

A perfect example of the type of service that should be recognized can be found in the recent launch of the City University of New York’s Academic Commons project (https://commons.gc.cuny.edu). The CUNY Academic Commons was the brainchild of a small number of non-tenured faculty and staff who had the pioneering idea to create an online academic social network exclusively for use by the university’s faculty, staff, and graduate students. Built entirely on a foundation of open source software, the focus of the online network was to create an environment for communication and collaboration between the scholars teaching within the 24 units that make up the CUNY system. Since the launch of the online network in 2009 the project has expanded to include the “Commons in a Box” initiative, an open-source venture that will enable other academic institutions to create and customize their own virtual spaces for academic research and collaboration. However, in discussions with Matthew Gold, the project leader for the initiative and the only key person on the project in a traditional tenure-track academic role, I learned that his contribution to the creation and expansion of the Commons was defined as “service to the university,” and thus not given the same weight as a traditional refereed publication would have been in his faculty evaluation for tenure and promotion. Despite the fact that the project has brought a considerable amount of attention to CUNY as organizations such as the MLA sign up to utilize the Commons in a Box software to support their own academic initiatives and institutional purposes (Roscorla 2011), Gold felt compelled to publish an article on his experience to have the project be counted as true scholarship. Gold’s article, co-written with George Otte and entitled “The CUNY Academic Commons: Fostering Faculty Use of the Social Web” (Gold and Otte, 2011), was a case study on the implementation of the Common project to detail the creation and impact of this new academically focused social network.

As a faculty member and digital practitioner, Gold’s experience is not unusual. Sean Takats, a history professor and director of research projects at the Roy Rosenzweig Center for History and New Media, details similar challenges in his blog post “A Digital Humanities Tenure Case: Part 2: Letters and Committees” (Takats 2013). Takats takes the bold step of pulling back the curtain and discussing in great detail the challenges he faced as a digital humanist on the tenure track. Takats was a project lead and co-director for Zotero, a digital software platform designed to assist academics in organizing and sharing research. The software he helped to bring to fruition has been widely recognized and adopted as an excellent resource within the digital humanities and communities well beyond. However, many of the digitally inspired accomplishments achieved by Takats were met with resistance by members of his college-wide tenure committee because “some on the committee questioned to what degree Dr. Takats’ [sic] involvement in these activities constitutes actual research (as opposed to project management). Hence, some determined that projects like Zotero et al. while highly valuable, should be considered as major service activity instead” (Takats 2013, 1).

As technology continues to digitally disrupt the established methods of operating inside the academy, it will be imperative for institutions of higher education to be able to take advantage of innovative ideas developed by the multimodal “thought leaders” within our midst. In the coming years projects like the CUNY Academic Commons and Zotero, which converge on the boundaries bordering cutting-edge technology and ground-breaking pedagogy and academic collaboration, will become increasingly prevalent. If these endeavors are to be successful they will require expert stewardship that can usually only come from leaders familiar with both the technology and the pedagogy. Unless the academy starts to recognize in the tenure and promotion process the contributions of faculty with the capabilities to shepherd these types of digital initiatives, institutions may find it increasingly difficult to get non-tenured educators to play active roles in the future.

Step 5: create discipline-specific communities of digital innovators and thought leaders

Anvil Academic, a new joint project by the National Institute for Technology in Liberal Education (NITLE) and the Council for Library and Information Resources (CLIR), is seeking to fill the void in objectively judging digital scholarship by offering a new virtual ecosystem where non-traditional scholarly work can be evaluated under the direction of traditional university presses and publishing outlets. The founders of the Anvil project hope to provide a true multimodal publishing platform that would enable all forms of digital media to be presented, reviewed, and sanctioned by well-established academic associations possessing the gravitas to substantiate the quality of digital scholarship (Kolowich 2012).

The Anvil project and similar initiatives, such as the CUNY Academic Commons, can help to provide answers to many of these problems by fostering virtual communities for multimodal scholars to collaborate and create more efficient methods of peer-to-peer communication specific to the digital disciplines. For example, the CUNY Games Network, a group on the CUNY Academic Commons dedicated to the study and pedagogical uses of interactive simulations and games, is helping to connect digital practitioners from across the the CUNY system. These educators, many whom may have rarely been able to interact with their colleagues on other CUNY campuses, are now collaborating on research, sharing curricular material, and engaging in ongoing discussions surrounding all aspects of gaming. The Academic Commons, and similar projects, can help to establish essential enclaves within the ranks of the digital disciplines to promote reform and respond to the concerns that tenure and promotion committees may have on the topics of digital scholarship and peer review. For example, digital practitioners within the tenure review process could use similar online systems to establish portfolios to display their interactive creations and have them assessed by qualified peers in the larger academic community to ascertain the quality of the scholarship. The establishment of these online portfolios could also provide snapshots to assess professional growth of a candidate over the period of time they are on the path toward tenure.

The underlying fears surrounding the establishment of discipline-specific communities invariably revolves around whether or sufficient peer review would occur in such environments. In Planned Obsolescence, Kathleen Fitzpatrick explains how the open-source blogging system CommentPress, integrated into the larger MediaCommons academic network, was used as a means to enable peers from within the digital humanities to provide an ongoing critique of her latest manuscript throughout various stages of the reviewing and publishing process. The asynchronous, communal, and open peer-to-peer review that took place within these digital confines would have been difficult to replicate in a traditional print setting. Fitzpatrick suggests that communal learning systems like CommentPress can become “useful tools not just for quickly and engagingly publishing a text, and for seeking feedback while a text is in draft form, but for facilitating an open mode of review” (Fitzpatrick 2011, 115) of digital publications. The open nature of these communal learning systems, where commenters do not reply in the manner attributed to standard double-blind, peer-to-peer reviews, can produce a higher level of trust in the critiques offered because the reviewers are not anonymous and have placed their opinions and academic reputations out in public.

Step 6: broaden the definition of publications to include multimodal productions

The definition of academic publishing should and must be expanded to include new multimodal outlets that are poised to overtake print-based media. Paula Petrik notes that academics are traditionally “people of the book” and will have to adapt to a new digital paradigm in order to fairly evaluate “non-traditional forms and formats of scholarship” (Cheverie et al. 2009, 224). These “people of the book” will continue to have their perceptions of scholarship challenged as academics integrate larger amounts of technical, visual, audio, and web-based elements into their scholarly pursuits. For example, in the same way that high impact sites like the Huffington Post have supplanted conventional printed newspapers and magazines, the rapid adoption of tablet computers and smartphones will redefine the ways students and educators will consume and process information in the coming years. This transformation is already underway. Apple released its iBooks Author application in early 2012, which was designed to enable educators to produce and distribute content that previously required traditional publishing venues. In addition to conventional text, multimodal scholars will now be able to combine videos of speeches, slideshow presentations, music and spoken audio, animated 2-D and 3-D illustrations, and interactive applications, all within a digital format that will run on a tablet device running the Apple iOS. And Apple isn’t the only company banking heavily on the future of fully interactive digital publications. The applications within Adobe’s Digital Publishing Suite offer similar functionality as iBook Author, with the added benefit of being able to create content for alternative tablet devices by Microsoft, Android (Google), and others.

Now that faculty members have access to these alternative production applications, they will be fully able to design customized textbooks to better support the specific curricular needs of their classes and programs. The impact that will be felt on a curriculum-design level will be nothing short of revolutionary for digital practitioners innovative enough to incorporate these tools into their scholarly practice.

Professor Stephen Nichols of Johns Hopkins University, in a discussion of academic peer review, believes that the continuing use of phrases such as “publications” as the primary seal of approval for tenure and promotion will discourage younger faculty members from engaging in digital scholarship, since it is viewed as of significantly lesser value than print-based, peer-reviewed journals (Cheverie et al. 2009). The bias against digital scholarship that Nichols describes creates a climate of fear inhibiting experimentation, which is detrimental not only to scholars in the digital disciplines, but for the entire academy. Fearing to test the limits of academic and technical innovation runs contrary to everything that the educational system should aspire to achieve, and also has a negative impact on the evolution of pedagogical practice.

Ken Norman, a professor of psychology at the University of Maryland, agrees with Nichols. Based on research that he conducted on university models for tenure and promotion, Norman concludes that junior faculty members generally “wait to get tenure before they become cyberized” because “positive tenure and promotion decisions are based on grants and publications in top-tier journals” (Cheverie et al. 2009, 227-28). While delaying the integration of technical innovation into their scholarship may not constitute a burden for faculty in liberal arts and science departments, it can be a substantial professional barrier for digital practitioners. The speed at which technological advances occur in digital disciplines creates a finite window of time to study and implement digital research. Any delay in assimilating new developments into their scholarship places digital scholars at risk of having their research become obsolete before it can ever be published. It is precisely for this reason that it is imperative for the academy to recognize that educators are no longer limited to the printed word in order to participate in deep and meaningful scholarly production. If this position is adopted by academic tenure and promotion committees they will be forced to take the appropriate steps to acknowledge these educational trends, and reward them accordingly.

Conclusion

The definition of scholarship can take many forms and will vary greatly based upon the academic discipline. One of the fundamental goals of scholarship is to create intellectual work that advances the field of study in which the academic endeavor originates. The holy trinity for tenure and promotion—encompassing publishing, service, and teaching—has always been skewed more heavily toward publishing. The impediments to scholarly acceptance of digital media educators closely mirror the challenges that faced earlier academic pioneers of ethnic, Black and, women’s studies during the 1960s and 1970s (Jaschik 2009). It can be said that very little has changed since that time. The academy is an institution bound by tradition, and when new fields of study are developed, it often responds with hesitation and skepticism to emerging disciplines.

Under the current system there are numerous institutional biases and obstructions that unnecessarily complicate the pathways to tenure and promotion for digital faculty. Key among these barriers is the traditional peer-review system that has essentially contracted out the decision-making process for tenure candidates to a select group of academic journals and presses. Because most tenure and promotion committees lack the expertise to critique every discipline, especially in fields that span several areas of study, this aging paradigm is not practical for the emerging digital disciplines. Just as other industries outside of the academy have been altered by major economic and technical changes, higher education may experience a similar transformation unless the academy begins to adapt (Pearce, Weller, Scanlon, and Kinsley 2010). Without modifications many of these digital scholars, in order to validate their own definition of intellectual excellence, will leave the academy in favor of the higher salaries that they can command in the private sector.

Looking back on my own academic career, I am amazed at the naiveté with which I negotiated my academic contract and the methods by which my scholarship would be assessed. As the sole fulltime faculty member in a new discipline established by my college, I was completely unaware of the territory that would have to be traversed to fashion appropriate standards for my scholarly evaluation. While my educational and professional experience had equipped me to teach in the digital disciplines, I was ill prepared as digital media faculty member for navigating the terrain of the academic tenure and promotion process. If any of the recommendations from the MLA had been in place when I was hired to help establish a new digital technology major at my college, my journey through the tenure process might have been a more balanced and constructive experience.

I transitioned to the university from the private sector more than a decade ago, and I have found that my experience is not unique among educators working within the digital humanities and digital media fields. The tenure and promotion system should embrace expanded definitions of acceptable scholarly venues to advance the practice of multimodal scholarship, not only to attract and retain the next generation of digital professionals, but also in order not to discourage new or established faculty members from engaging in technology-based pedagogy and scholarship.

References

Cheverie, Joan F., Jennifer Boettcher, and John Buschman. 2009. “Digital Scholarship in the University Tenure and Promotion Process: A Report on the Sixth Scholarly Communication Symposium at Georgetown University Library.” Journal of Scholarly Publishing 40:210-30. OCLC 360067692.

Cross, Jeanne Glaubitz. 2008. “Reviewing Digital Scholarship: The Need for Discipline-based Peer Review.” Journal of Web Librarianship 2:1-29. OCLC 652131661.

Fitzpatrick, Kathleen. 2011. Planned Obsolescence: Publishing, Technology, and the Future of the Academy. New York: New York University Press. Kindle edition. OCLC 710019002.

Gold, Matthew K., George Otte. 2011. “The CUNY Academic Commons: fostering faculty use of the social web.” On the Horizon 19: 24-32. OCLC 701118378.

Gold, Matthew K, ed. 2012. “The Digital Humanities Moment.” Debates in the Digital Humanities. Minneapolis, MN: University of Minnesota Press. Kindle Edition. OCLC 784886612.

Harley, Diane and Sophia Kryz Acord. 2012. “Peer Review in Academic Promotion and Publishing: Its Meaning, Locus, and Future.” CSHE Center for Studies in Higher Education:1-117. OCLC 709559995. Accessed February 14, 2013: http://escholarship.org/uc/item/1xv148c8#page-1.

Ippolito, Jon, Joline Blais, Owen Smith, Steve Evans, and Nate Stormer. 2009. “New Criteria for New Media.” Leonardo 42:71-5. OCLC 4893498214.

Jaschik, Scott. 2012. “Tenure in a Digital Era.” Inside Higher Ed. Accessed February 14, 2013: http://www.insidehighered.com/news/2009/05/26/digital.

Kolowich, Steve. 2012. “New Seal of Approval.” Insider Higher Ed. Accessed April 17, 2012: http://www.insidehighered.com/news/2012/02/13/anvil-academic-aims-provide-platform-digital-scholarship.

Modern Language Association (MLA). 2012. “Guidelines for Evaluating Work in Digital Humanities and Digital Media.” Accessed February 14, 2013: http://www.mla.org/guidelines_evaluation_digital.

Nagel, David. 2009. “Most College Students to Take Classes Online by 2014.” Accessed Feb 14, 2013: http://campustechnology.com/articles/2009/10/28/most-college-students-to-take-classes-online-by-2014.aspx.

Pearce, Nick, Martin Weller, Eileen Scanlon, and Sam Kinsley. 2010. “Digital Scholarship Considered: How New Technologies Could Transform Academic Work.” In Education, 16. OCLC 728081434. Accessed February 14, 2013: http://www.ineducation.ca/article/digital-scholarship-considered-how-new-technologies-could-transform-academic-work.

Roscorla, Tanya. 2011. “CUNY Plans to Share Social Network Tools That Break Down Silos.” Accessed February 14, 2013: http://www.convergemag.com/infrastructure/CUNY-Social-Network-Tools.html.

Takats, Sean. 2013. “A Digital Humanities Tenure Case, Part 2: Letters and Committees” Accessed February 14, 2013: http://quintessenceofham.org/2013/02/07/a-digital-humanities-tenure-case-part-2-letters-and-committees/.

 

About the Author

James Richardson holds a M.P.S. in Interactive Telecommunications from New York University’s Tisch School of the Arts and has served as a project manager and consultant for numerous Fortune 500 companies.

During his career he has managed the deployment of Multimedia and Telecommunication initiatives for companies such as MetLife, Century 21, ADP, Bankers Trust, Suze Orman Inc, and the City University of New York.

Professor Richardson is well versed in Internet technology, game design, digital audio and video production, e-commerce strategy, animation, and web development. His latest project involves creating an interactive iPad application to motivate at risk youth to find their voice in the information age.

Skip to toolbar