Daily Archives: December 6, 2019

css.php
A set of networked points of light appear at once as stars and as a visualization of networked connection, over a background that looks like a night sky.
1

Introduction: Issue Sixteen

Conversations about digital pedagogy tend to revolve around the twin poles of unbridled enthusiasm on the one hand and entrenched skepticism on the other. Despite the institutional investment in the digital humanities evinced by the creation of specialized Certificate, Masters, and PhD programs across the country, including at Northeastern University, Duke University, and the CUNY Graduate Center, digital approaches to other disciplines, as well as digital pedagogy across the disciplines, often remain understudied. And despite possibilities afforded by digital tools for the increased engagement and shared knowledge production in the classroom, many instructors are wary of the challenges new technologies pose to the traditional learning process. In particular, instructors tend to be cautious of the perceived attention-deficit run by students constantly bombarded with fast-moving interactive images. One of the primary benefits of instructional technology, in fact, is probably the very thing that makes some instructors anxious about student attention spans: it is often interactive technology’s ability to pull content out of sequence that activates students’ analytic skills and enables sustained, problem-based concentration. So, for example, something as simple as a word cloud in which the size of each word corresponds to its repetition in a passage of literature can help to illustrate the main preoccupations of the text; the linearity of the text can mask these repetitions, but the instructional technology helps to draw them out.

As the essays in this edition of The Journal of Interactive Technology and Pedagogy make clear, one of the benefits of a digital approach to pedagogy is that it can both slow down the learning process for students, as in the example above, and foster critical thinking about the implications, risks, and affordances of technology in the classroom. The characteristic tension in conversations about digital pedagogy between enthusiasm for, and skepticism of, digital tools and methods can obscure serious questions about surveillance, community, and experiential learning that the scholarship of digital pedagogy provides the opportunity to explore. Bringing these questions to bear not only on the types of assignments one designs involving digital tools, but also on the presentation of digital issues themselves, produces more engaging and inclusive curricula and activities that help make students critical digital practitioners at the same time as they learn subject material.

We are excited to share with you Issue Sixteen since it offers a deeper dive into some of the key questions that inform thinking about technology and pedagogy. For instance, Andrew Roth and Alex Christie remind us that failure in DH spaces and curriculums can be a productive site for learning. Their essay, “Beyond the Fear of Failure: Toward a Method for Student Experiential Autobiography Mapping (SEAM),” foregrounds exactly how inevitable technical failures can become important sites for innovative pedagogy. They argue that the seams, or fissures, that emerge when technical tools break down also become the very ties that make faculty and staff collaborations so productive. In their own collaboration, Roth and Christie explain how students practice important skills like problem solving and troubleshooting from an integrated project-based curriculum.

Karen Rose Mathews and Gemma Henderson’s collaboration at the University of Miami’s Lowe Art Museum, “Animating Antiquity: Student Generated Approaches to Recontextualizing Ancient Artworks Using Digital Technologies,” offers a tangible example of the ways technology affords opportunities for students to create knowledge that engages the public sphere. Using 3D models and prints, their students designed new modes for museumgoers to access the feel and function of ancient artworks. In their example of pedagogical innovation, both graduate and undergraduate students were able to create research dossiers as assemblages by integrating multiple experiential modes that could increase learning access.

The digital humanities have provided important sites for innovative approaches to experiential learning and interactive teaching. Jenna Freedman’s zine, “Weigh of Showing,” offers the zine genre as an alternative mode for assessing students’ involvement with course materials. She argues that there are multiple kinds of literacies that the formal essay format cannot always measure. In this, she posits that there are other ways of knowing, and that in other ways of showing, students can explore how they learn not only through writing but also through feeling, seeing, and listening.

Technology foregrounds the manifold forces that are changing the very idea of “the public,” since it opens new spaces for communication and community. In his “Changing Culture, Changing Publics: Redesigning the Rhetorical Public,” Philip B. Gallagher explores the ways in which rhetorical publics are changing to argue how user-based document design should respond to the Public’s new elevated status. He traces a rhetorical history of civic communication responsive to audience expectations, and examines how such communicative practices will need to adapt to the demands of technology and the knowledge communities they produce. As distinctions between private and public continue to blur, this question concerning the redesign of a rhetorical public will be increasingly urgent.

Even as technology offers the potential for more inclusive teaching and learning, it is important to be attentive to the moments when it reifies old patterns and practices of exclusion. Christina Boyles makes this point in “Finding Fault with Foucault: Surveillance and the Digital Humanities.” She argues that, while surveillance studies has done well to demonstrate the ubiquity of surveillance technologies and their erosion of personal rights, the fact that the effects of surveillance are not distributed equally is underappreciated. Indigenous peoples, for instance, have experienced some of the harshest forms of panoptic surveillance in lands claimed by the United States, and our inability to recognize this inequality only works to bolster the logics of conquest and the colonial machine. Her intervention reminds us that, as teachers and scholars, we must be willing to question the culture and the canon in the service of a more just future. This, along with the other essays in this issue, provides new avenues for thinking past old tensions in debates in digital pedagogy by examining the concrete implications of the work we do.

About the Editors

Shelly Eversley teaches literature, feminism, and black studies at Baruch College, City University of New York, where she is Associate Professor of English. She is Academic Director of the City University of New York’s Faculty Fellowship Publication Program and Founder of equalityarchive.com. She is the author of The “Real” Negro: The Question of Authenticity in Twentieth Century African American Literature as well as several essays on literature, race, and culture. She is editor of The Sexual Body and The 1970s, both special issues of WSQ, a journal by the Feminist Press. She is also editor of the forthcoming book Black Art, Politics, and Aesthetics in 1960s African American Literature and Culture (Cambridge), and is revising a new book titled The Practice of Blackness: Cold War Surveillance, Censorship, and African American Literary Survival. She earned her undergraduate degree at Columbia University, and her graduate degrees at The Johns Hopkins University.

Krystyna Michael is an Assistant Professor at Hostos Community College, City University of New York. Her current book project, The Urban Domestic: Homosocial Domesticity in the Literature and Culture of 19th- and 20th-Century New York City, explores the relationship between transformations in urban planning and domestic ideology through American literature of the city. She has published articles and reviews in The Edith Wharton Review, The Journal of American Studies, and Postmedieval and is a member of the editorial collective of The Journal of Instructional Technology and Pedagogy. She works on the development teams of the grant-funded CUNY-based OER platforms, Manifold and the CUNY Academic Commons, and her courses center around American literature and writing, the digital humanities, and architecture and city space.

A cross-section of a brain appears in blue light over a dark background, with nodes and lines of light giving the impression of interlinked computer circuits.
0

Table of Contents: Issue Sixteen

Introduction
Shelly Eversley and Krystyna Michael

Beyond the Fear of Failure: Toward a Method for Student Experiential Autobiography Mapping (SEAM)
Andrew Roth and Alex Christie

Animating Antiquity: Student Generated Approaches to Recontextualizing Ancient Artworks Using Digital Technologies
Karen Rose Mathews and Gemma Henderson

Weigh of Showing
Jenna Freedman

Changing Culture, Changing Publics: Redesigning the Rhetorical Public
Philip B. Gallagher

Finding Fault with Foucault: Surveillance and the Digital Humanities
Christina Boyles

Issue Sixteen Masthead

Issue Editors
Shelly Eversley
Krystyna Michael

Managing Editor
Patrick DeDauw

Copyeditors
Param Ajmera
Elizabeth Alsop
Patrick DeDauw
Angel David Nieves
Brandon Walsh

Staging Editors
Inés Vañó García
Lisa Brundage
Anne Donlon
Benjamin Miller
Teresa Ober
Luke Waltzer

Data visualization with flowing of student activity, featuring red dots networked in hub-and-spoke arrangements (created in Gourse).
2

Beyond the Fear of Failure: Towards a Method for Student Experiential Autobiography Mapping (SEAM)

Abstract

This article advances a pedagogical ethos, which we call SEAM (Student Experiential Autobiography Mapping), that deliberately interweaves the interests of students, staff and faculty. As we argue, it additionally facilitates the design of project-based assignments that foreground the instructive value of failure. Within this context, we discuss instances where specific technological failures experienced in our fourth-year practicum have prompted us to change the way we teach our first-year courses and administer our workstations and servers. Doing so creates a feedback loop that allows us to incrementally refine our curriculum over time. After outlining the theoretical context for this approach and detailing how it allows students to learn from productive failure, we discuss a case study in implementing our SEAM approach in the classroom. As part of this discussion, we share practical examples for designing digital humanities assignments that incorporate failure as a learning outcome. We then go on to advance a longitudinal methodology for visualizing student learning over the course of an entire program, incorporating student technobiographies and user story mapping. Combined, these pedagogical strategies facilitate reflective student, staff, and faculty practices that allow a digital humanities curriculum, and chosen teaching tools, to grow and adapt over time.

Our Interactive Arts & Science students were less than two weeks away from competing in the LevelUp Student Showcase with their videogame created in our fourth-year capstone course. Yet minutes before a public play testing session they had encountered a show stopping bug. Random text and textures in their game were mysteriously replaced with glyphs: strings of cipher strewn throughout their game world, strange portents whose only underling message appeared to be the obvious—the game was unplayable, unreadable, and no one had the slightest idea as to the cause. Such failures are common in complex projects—from renovating classrooms to building a digital game. In our respective staff and faculty roles at Brock’s Centre for Digital Humanities, we are concerned at once with building and administering digital humanities infrastructure (i.e. workstations, servers, collaborative spaces) and reflecting upon how failures within those systems impact student learning. As we collaborate across our staff and faculty roles, we increasingly find the most potentially instructive failures occur when students brush up against the limitations of a particular tool. As a result, we are developing a broadly applicable digital pedagogy, combining technobiographies (Henwood 2001; Ching and Vigdor 2005; Brushwood-Rose 2006) and user story mapping (Patton 2014), that teaches students, staff, and faculty to learn from the productive failures that occur when we encounter the unforeseen limitations of the tools we use. Such learning involves deploying tools to solve a problem but also refining learning outcomes to enhance student-led problem solving using those tools. Operating in a multi-perspectival mode that resists partitioning the interests of students, faculty, and staff, we call this approach Student Experiential Autobiography Mapping, or SEAM.

SEAM sees the experiences of teachers, learners, and support staff as multi-threaded facets of shared knowledge environments and thus endeavors to further interweave them. This approach to digital pedagogy is a result of our ongoing collaborative work on the architecture of our first-year survey courses in the Interactive Arts & Science and GAME programs. These courses prepare our students for our third and fourth-year curriculum in which they are expected to collaboratively produce digital media objects, including innovative websites, digital art, and videogames. A notable challenge is using past failures, which tend to be tool-specific, to inform program outcomes, which are high-level objectives (such as learning from one’s successes and failures). Each year, a curriculum committee meets to assess the program outcomes provided as guidance to instructors to refine existing or develop new assignments. The SEAM approach to digital pedagogy outlined below describes how our method for changing infrastructure and assignments in response to our collective past failures continues to evolve. It is intended to keep a record of diverse student experiences while also helping us learn from the inevitable future failures that inform our curriculum development discussions.

We are piloting our SEAM approach to digital pedagogy at three points in a cyclical process during a four-year degree program. First, we equip students with problem-solving and troubleshooting abilities early in their program. Second, examples of critical tool failure in the fourth-year capstone courses circulate between students and instructor in our programs as cautionary tales. Changes in infrastructure, such as the addition of version control servers on campus, are material evidence of responding to failures from yesteryear; however, the narrative of student failure motivates their use. At the third point, once these changes have been made, they are incorporated back into the design of our first-year assignments. In the case of our fourth-year capstone students using version control, it is tempting to view the deployment of a server with version control, a tool, as the solution to a problem. However, paradoxically, the version control server is only a useful tool if it has been used proactively, and consistently, by students. As such, instructing students to use version control in their first assignments (despite its complexity) therefore sets the expectation that they will encounter failure later in the program.

Foregrounding technological failure at the start of our curriculum, we believe, enlivens students’ sensibilities to the creative potential of the tools we teach. Indeed, as Julia Flanders affirms: “The very seamlessness of our interface with technology is precisely what insulates us and deadens our awareness of these tools’ significance” (2019, 292). Having introduced and framed failure as constructive, we intend to map student experiences of failure throughout the program (with particular emphasis on the fourth-year capstone course), and use results gathered from such mapping to continually reflect upon and refine our first-year curriculum over time. Most importantly, we are conceiving of a SEAM approach as a way continually shape and refine the infrastructure in our digital humanities centre in response to changing student needs over time. Our final goal is a structured collection of autobiographical interviews with graduating students; this collection will serve as a knowledge database that we use to improve the learning objectives tied to future course development work. Using a design exercise called user story mapping, in which hypothetical users derive benefits from their actions, we will derive hypothetical case studies from the knowledge base and use them to inform faculty and staff decision-making related to our curriculum. We contribute our method as a working blueprint for collaboration between staff and faculty in the field of digital pedagogy.

Our method aligns itself with the seamful design of networked knowledge outlined by Aaron Mauro, Daniel Powell, and co-authors, who “wish to expose the seams that knit technological infrastructure and academic assessment for both faculty and students working on DH projects” (2017). While our approach concerns itself specifically with the classroom, rather than the context of student research on digital humanities projects discussed by Mauro et al., we equally believe that exposing students to seams—be they the ruptures and fissures that exist when tools break down or the threads that bind their own learning together with that of faculty and staff—empowers them to take an active role in the education as critical users and creators of technology. As Mauro et al. put it, “When we elide the seams between teaching and research, our students become passive agents and mere consumers of education” (2017). By teaching our students object-lessons in instructive failure, we aim to empower them to see digital environments not as spaces that demand rote repetition of established workflows but as creative problem-solving environments in which limitations and constraints can serve a liberating potential.

As the digital humanities continues to establish itself within disciplinary and institutional frameworks, discussions about the state of the field are increasingly turning from small-scale and ad-hoc stories of how different spaces operate to longer narratives about how these spaces continue to change and evolve over extended durations of time. Within this context, our SEAM approach is meant to offer a framework within which digital humanities, broadly, can draw from digital pedagogy, specifically, in order to reflect upon its diverse narratives of institutional establishment, adaptation, and maturation. In what follows, we discuss how we are implementing such an approach in our curriculum. First, we outline our experiences of instructive failure in the context of digital humanities infrastructure. We go on to discuss the design of project-based digital humanities assignments that incorporate instructive failure as a learning outcome. Finally, we conclude by outlining a method for collecting and reflecting upon student experiences of failure over time.

Beyond the Fear of Failure

The instructive value of failure is hardly new to the digital humanities. As John Unsworth reminds us, “Our failures are likely to be far more difficult to recover in the future, and far more valuable for future scholarship and researcher, than those successes” (1997). More recently, Bethany Nowviskie has renewed the value of failure in an age where ruptures in physical research materials prompt reflection upon ongoing institutional reformulations of humanities work; as she writes, “It’s worth reflecting that tensions and fractures and glitches of all sorts reveal opportunity” (2013). In the case of students in our Team-based Practicum in Interactive Media Design and Production, graphical failures were the symptom of an underlying constraint of the tools in hand. Textures in the game had exceeded the memory restrictions in the operating system (the NTFS filesystem defaults to a block size of 4096 bytes), causing a memory overflow that transformed their videogame into a piece of glitch art. A workaround was implemented, and their game debuted shortly thereafter on the packed floor of Toronto’s Design Exchange. How do the lessons learned by these students aggregate into best practices for future students?

Such glitches, ruptures, and failures often reveal infrastructural constraints in the digital humanities spaces we manage. In the instance of our 2018–2019 fourth-year practicum, the filesystem failure encountered by our students has prompted us to be more aware of the tool constraints for publishing executable games. Furthermore, the public play test was salvageable because of a best practice derived from previous years projects—reverting back to a stable build identified in their revision management system. Prior to that, in 2014, failures encountered by students prompted us to rethink how we scaffold instruction of specific tools, including revision management tools, across an entire curriculum. That year’s students signed up for an off-campus collaborative software development system with integrated version control. Project management services that include git or subversion repositories allow teams to make incremental changes to files in the cloud, syncing updates across all team members as they are made. But our students had encountered a problem: the service, provided under an educational license, did not recognize many of the emails they used as valid institutional addresses and locked them all out of the server. While the problem was resolved, it prompted us to fundamentally rethink how we teach a digital humanities curriculum. The student experiences with version control can also be gleaned from interviews with graduates of the IASC program dating back to 2012. In a similar experience to our 2019 students, graduate Isaac (anonymized) recounts:

About 24 hours before our team was heading to LevelUp to present our game, we encountered a problem where our most up-to-date build of the game was overwritten with an older build, so we lost more than five hours of work. We had to crunch to get our game back to where it needed to be for us to present at LevelUp. This is mainly because of the four lab computers we had access to use for our development, only one of those computers had the [game engine] installed. … We didn’t have a file server. We were using our 2GB free [file hosting service] accounts to share files. We should have had a file back-up system so we could’ve not lost all of that work. 

Taking a cue from Miriam Posner (2016), we now administer revision management systems on file servers of our own and deploy assignments that teach students to use them in every year of the program. Like the filesystem failure our students were to encounter in 2019, the version control failure in 2014 prompted us to rethink the operating principles of our digital humanities space. We are continually motivated to formally refine and adapt the student experience in response to failures such as these.

The inevitable failures encountered by our students reveal a problematic underlying much digital humanities work, one that is as wicked as it is productive. In our university-driven work with digital tools and resources, we continually encounter instances in which digital tools developed for industry use don’t neatly align with our academic context. In other words, digital humanities scholars and students frequently work with what Susan Leigh Star and James Griesmeyer call boundary objects, those ubiquitous infrastructural resources which cross between different localized implementations and diverse communities of practice. Working with such objects causes productive failures of all sorts, such as a company’s server not recognizing our student’s institutional email addresses. Elsewhere, we have found that many educational licenses for industry-grade software restrict the contexts in which student work can be exhibited to public audiences. While using such licenses allows students to learn industry-grade tools, it also forces them (and us) to learn about licensing restrictions by diligently avoiding instances in which industry and academic uses for the tool may conflict. Conflicts such as these may tacitly inform many digital approaches to teaching rhetoric and composition that bring industry or for-profit tools into the classroom. To use more ubiquitous examples, using social media platforms such as Twitter or Medium as a venue for publicly disseminating scholarship brushes up against these platforms’ use of text as a vehicle for monetization. What can we learn about the mechanisms of clickbait, bot traffic, or sponsored posts when the tools we use to teach writing are designed to leverage these phenomena? What productive conflicts arise when using YouTube to access Open Educational Resources in the classroom also means students must watch advertisements during a lecture or other class-based exercise? As a variety of digital tools are increasingly incorporated into the classroom, their status as boundary objects that sit across diverse (and at times contradictory) contexts is evident in ways both small and large.

Situating boundary objects such as these in the field of critical infrastructure studies, Alan Liu advocates that digital humanities work “assist in shaping smart, ethical academic infrastructures that not only further normative academic work … but also intelligently transfer some, but not all, values and practices in both directions between higher education and today’s other powerful institutions” (2016). We agree emphatically, and we further believe that such an understanding of infrastructural boundaries forms an approach to digital pedagogy grounded in the instructive value of failure. We continue to learn much from infrastructural failures in which the tool at hand carries and underlying set of constraints that, sooner or later, conflict with the context in which it is being implemented. We further believe such conflicts may be repurposed to suit learning outcomes contingent upon productive failure. For instance, while the research tool Zotero is designed to store bibliographic citations, it can also be used to store other types of information (thus transforming it into a boundary object). Asking students to create a bibliographic record of their classmates’ discussion contributions in Zotero invites failure cases where the metadata students wish to record doesn’t neatly align with the fields dictated by Zotero (and various citation styles); these failure cases prompt students to learn about citation styles and bibliographic records by exploring their limitations and edge-cases. Similarly, much could be learned by asking students to compose a piece of academic writing using a text-based tool that is not designed for outputting print documents. Twine, for example, is designed to create text-based adventure games and interactive narratives; what might students learn about the conventions of academic writing by using Twine to write a short research paper? In our work as digital humanists, we frequently find that the tools we work with aren’t perfectly suited to the task at hand; as such, we have begun to design project-based assignments in which students are deliberately exposed to failures of this sort and taught to learn from them. Whereas digital pedagogy often formulates technological literacy as the ability to use a tool properly, we find technological literacy also encompasses creatively rethinking such practices in inevitable instances when the tool is only moderately suited to the present context. Echoing Mauro et al. and Flanders, this SEAM approach exposes students to the ruptures and fissures inherent in working with digital tools (which we see as boundary objects), rather than suggesting effective digital humanities work involves the seamless operation of technology.

Learning to Fail: Designing Experiential DH Assignments

The idea of a digital pedagogy based in productive failure first emerged through a conversation between Alex Christie and CDH Project Coordinator and Technical Assistant, Justin Howe. Undertaking a rapid prototyping process of our digital prototyping assignments, they considered assigning Axure RP (a digital prototyping tool) as an environment for developing small-scale persuasive games. (Bogost 2010) They agreed that the fact Axure is not a game development environment was precisely why this assignment would be so valuable to our students—the lesson to be learned was that success always means success within a set of allotted constraints. In this way, the Axure tool was being deliberately used in a context for which it was not intended—creating videogame prototypes—and therefore explicitly deployed as a boundary object. The assignment therefore forced students to figure out what creative ideas could be successfully implemented within the constraints of the Axure RP prototyping environment and other assignment parameters. In this way, it sought to expose students early on to the pragmatic value of digital prototyping (and digital humanities work broadly), not solely as an exercise in dreaming up blue sky potential, but also—more unforgivingly—as a process of forging the realistic out of the fantastic. They were bound to encounter productive failure.

If the chief learning outcome of the assignment is for students to understand that concept cannot feasibly exist apart from execution, it also codifies the underlying pedagogical values within which we situate our pedagogy. The prototyping work asked of students requires them to approach Axure as a creative problem-solving environment. This means students frequently encounters instances when the tool does not allow them to achieve an important part of their intended game. In order to move forward, students must fundamentally rethink how the tool can be used in order to achieve their stated outcome. For instance, one team created their own method for causing screen brightness to dim by overlaying a black square on the window and tying its opacity to a variable whose value was influenced by player actions. Another team failed at creating a collision-detection system that would stop the player from going through the walls of a maze; instead, they used Axure’s condition builder to ensure the two objects could never overlap. By asking students to create a videogame with a tool moderately suited to the task at hand, we build an environment where students quickly reach the constraints of the technology they use. This creates an experiential learning opportunity in which students are forced to encounter and learn from moments when technologies do not work as intended, learning to create new solutions to problems when a previous approach has failed. A key learning outcome of the assignment, then, is not so much learning how to use the assigned tool correctly as much as it is learning to continue using the tool to productive ends when it fails and breaks down.

Such a learning outcome requires students to learn to see the software environment used not as a space where outcomes are met by replicating established workflows (or a sort of digital reimagining of Paulo Freire’s banking model of education) but instead as a system that can be creatively rethought and repurposed. Central to this view is an emphasis on project management and collaboration fundamentals, which are built right into the architecture of the assignment. Following the CDH’s decision to host its own server infrastructure in 2014, we decided to build subversion into the architecture of the assignment as well. Each team is allocated its own SVN repository, and each repository is then used for students to collaboratively work on their version-controlled Axure project. Teams are also asked to communicate using Discord, and Andrew Roth uses web hooks to push changes to the subversion repository directly to each team’s corresponding Discord. Asking teams to construct their prototype using a version-controlled workflow teaches practical lessons in project management, such as using a centralized repository rather than emailing files and letting team members know when new deliverables are added. These are key lessons learned from previous instantiations of our fourth-year practicum, which we have now rolled forward into the design of our first-year assignments.

Most importantly, asking students to adopt version-control and team communication solutions as part of their assignment workflow means designing a particular lesson into the assignment: that collaboration is about accountability. Before beginning their prototyping work in earnest, teams are required to submit a Developer Document that divides prototyping work into five roles (Visual Designer, Data Modeler, UX Designer, UI Designer, and Creative Director) and asks teams to outline how the deliverables for one role required assets produced by another. This division of assignment duties foreshadows the communication challenges of the fourth-year teams; Victor (anonymized), class of 2016, said his experience of failure manifested “by either conveying too little information, outdated information, or undecided information across team before it [was] vetted.” Teams quickly learn that certain parts of the project cannot be completed until its dependencies are ready, which means that various teams encounter workflow and communication failures that expose gaps in their existing conception of how collaborative work gets done. In their final presentations to the class, numerous first-year teams reflected upon the importance of coming together to work as a team, whether such reflection included successful team workflows or admitting that a siloed approach had not delivered the expected results. We find using formalized systems, such as Discord and SVN, for team-based work helps students identify and visualize interpersonal and communication errors because team progress becomes directly contingent upon students using the system to send updates to fellow teammates. Giving students low-stakes environments to learn from such failures early in the program prepares them to address, or even obviate, high-stakes failures of this sort in their upper-year team-based practicum.

The lesson that workflow is as much about accountability as it is about cultivating a positive interpersonal environment is one that can only be learned experientially, which means designing a pedagogical framework within which teams can safely encounter workflow failures and move forward based on insights discovered therein. This framework prepares students to learn from team-based failure in two ways. First, in the weeks leading up to the final assignment, the instructor delivers lectures on topics including digital prototyping fundamentals and team management, which explicitly outline the different stages of team formation and best practices as teams move from one stage to the next. Second, the incorporation of technologies such as SVN and Discord creates a collaborative environment in which output and accountability are directly fused: each time a student works with a new version of the project, they cannot begin their work until encountering the latest revision made by another team member. Similarly, if the team hits a roadblock in their prototype because a certain asset or dependency is missing, the entire team can immediately identify the source of accountability. Both conceptually and pragmatically, then, the assignment is framed as an exercise in developing competencies in collaborative prototyping, defined as an iterative process where progress comes from finding out what doesn’t work and then moving forward. In this way, collaboration failures experienced by teams serve as object lessons in scope management, in which students are forced to consistently ask which practices best suit their goals and which do not. These project-based assignments therefore function as experiential learning opportunities in which students learn from technological and collaboration failures by directly encountering and overcoming them. So far, results have exceeded expectations. One team made a game in which navigating the maze of Brock’s Mackenzie Chown complex served as a functional metaphor for navigating depression. Another made a game about surveillance and counterinsurgency, while still others tackled topics including personality disorders and cultivating gratitude.

The first stage of our SEAM approach to digital pedagogy thus involves designing project-based assignments where students reach their own insights into doing digital humanities work by learning from instructive failure. Such failures are built into the assignment by treating the tools being taught as boundary objects, or technologies that are not perfectly suited to the given task. These assignments prompt students to reach the limitations of the tool and creatively overcome them. In the context of videogame design, this may include using a non-Game Development Environment (such as Axure) to create a videogame; in still other educational contexts, this may include using a Game Development Environment (such as Twine or Game Maker) to write a research paper or using a monetized platform (like YouTube or Facebook) to disseminate Open Educational Resources. In this way, a SEAM approach to designing digital humanities assignments focuses more on the assembly of conceptual and technical systems within which we ask students to explore and create, rather than handing down prescribed workflows by rote (again, with a nod to Freire). In turn, we ourselves refine such systems in response to student experiences later in the program, incorporating tools such as SVN and encouraging students to encounter the places where their work using such tools may begin to show at the seams.

Learning from Failure: Student Reflection through Data Visualization

In order to prompt student reflection upon failures encountered in their project-based work, we visualize student data generated throughout the course of these projects to build models of student knowledge. Andrew Roth creates such visualizations by taking the Subversion history from each team and visualizing it with Gource, an open source tool created by Andrew Caudwell that displays file systems as an animated tree evolving over time. Visualizing the complexity of the shared file system under version control at once makes the metadata of the process more legible and the task of growing that system more daunting. For example, by visualizing and comparing each repository of a single class, we can see at a glance which teams closely emulate the instructor’s example project and which grew beyond in the allotted time. While the rules of collaboration require students to diligently maintain the up-to-date version of their project, or head, by checking in functioning code, the metadata captured in the history shows a record of every failure including malfunctioning ignore files, desktop shortcuts mistakenly checked in as assets, and abandoned plugin folders. In sum, the Gource visualization for each team shows how that team’s version-controlled files and folders changed throughout the course of the project, providing a visual rendering of student activity in Axure. The visualizations open a space for reflecting on both the metadata borne of the technological infrastructure required for collaborative project work and the narrative that emerges from managing the project’s complexity over time.

Figure 1. Data visualization of student activity in first-year GAME course (created in Gource). Embedded video: A cluster of red circles are arranged in a circular formation, with each circle connected to the center by a white line (in a hub and spoke formation). Different clusters of circles are connected to each other by additional white lines, forming tree-like structures. The branches of the tree (and attached circles, like leaves at the tip) appear over time as the video plays. (Small pawn icons move about the tree, making these changes; pawns represent user activity.) These tree-like structures represent the file structure of a digital project. Multiple tree-like structures are present in the video, and each one represents a different student project.

Figure 2. Data visualization of student activity in first-year Interactive Arts & Science course (created in Gource). Embedded video as in Figure 1.

For example, in both visualizations the sample project created by the instructor is created first, followed by each group project. In an instant we can see there are sprints of productivity during lab times and very few team members committing to projects on the weekends. Using the instructor sample as a measuring stick, we can see that there are few projects in the 1F01 class that emulate the sample project’s complexity, whereas the 1P04 course has a smaller sample project and larger, more complex group projects.

Figure 3. Data visualization of student activity in fourth-year capstone course (created in Gource). Embedded video as in Figure 1.

We have also used Gource to visualize the videogames created by our fourth-year students. Using data from each SVN repository used over the past four years, we are able to see differences between each of our past four student teams. For instance, the first group using version control (before hosting a server on premise) demonstrates a tightly controlled structure managed by only one or two users. In subsequent years, the number of total simultaneous users increases. This suggests the repository is used by more individuals across their respective teams, which is supported by the push by faculty to use version control across all years of the program. The number of large-scale changes over time (such as branches or deletions) also increases in frequency which indicates that mistakes are made, large scale changes are applied (such as telling subversion to ignore certain file types), and these mistakes are corrected as time passes. It is also clear how the scope of the single 4L00 project dwarfs the first-year projects in size and complexity.

After presenting these findings from our first round of visualizations at the 2018 Digital Pedagogy Institute, we began integrating these visualizations back into the pedagogical structure of our first-year classes. Once teams have completed their prototypes, we provide them with the Gource visualizations of their work as an .mp4 video and use these videos as prompts for their final reflective assignments. In their reflective essays, students frequently noticed that work was conducted ad-hoc by different team members, rather than following a pre-established working schedule. Gource videos frequently showed irregular bursts of activity from different team members, rather than steady and predictable output that followed a coordinated project schedule. This was also one of the key ways in which Gource visualizations of work done in our first-year courses differed from that of our fourth-year courses. As such, students frequently remarked that a key failure was not coordinating their schedules and efforts more closely, and that such failure was not apparent to them until they saw the timeline of their Axure work rendered visually through Gource. Using formalized systems for student collaboration lets instructors visualize student activity and provide such visualizations as tools for student reflection; we find SVN and Gource to be an effective combination of tools for designing these reflective exercises.

While the principal outcomes of the assignment are for students to assess their evolving abilities in collaborative environments, the incorporation of the Gource visualizations further demonstrates for students that soft skills including communication, organization, and team dynamics cannot and should not be neatly parsed from technical considerations such as scheduling deliverables, maintaining project dependencies, and designing data and folder structures. The assignment furthermore reframes data visualization techniques not simply as tools for revealing objective facts but additionally as environments for metacognitive reflection and personal growth. How might digital tools reveal the seams between a student’s own approaches to collaboration and those of their teammates? As we prompt students to derive reflective insights from data visualizations of their work, we also encourage more technically-minded and tech-averse students to understand that technical implementation and interpersonal interaction co-construct the latticework upon which their knowledge matures and thrives.

Stitching Our Work Together: Faculty and Staff Reflection through Autobiography Mapping

Together, our use of digital prototyping assignments and reflective exercises involve stitching together disparate strands of student failure and digital tools, using such threads as opportunities for both student and instructor learning. Thus far, we have reached a series of findings for designing project-based digital humanities assignments and using them as a vehicle for faculty and staff reflection. First, it is essential to deliver lectures on team formation fundamentals as part of the introduction to project-based assignments; doing so both introduces students to collaboration best practices (a core element of doing digital humanities work) and teaches them how to move forward from inevitable stumbling blocks. Instructors can further encourage students to learn from failure by discussing the fundamentals of scope management, time management, and rapid prototyping—all of which assume that ideas are developed by encountering errors in planning and then retooling that plan in order to move ahead. Doing this over and over, or learning through iteration, dispels the common myth that excellent ideas and strong skill sets emerge from a vacuum. As part of this approach, instructors can introduce the assignment by giving students a template and encouraging them to tweak it; for instance, our GAME students are given a short game prototype made in Axure RP and asked to fix a series of bugs (thereby preparing them to fix the eventual errors in their own game prototypes). Most of all, faculty and staff can and should work together to design the suite of technical dependencies for the assignment, architecting an environment that encourages students to safely explore and experiment instead of copying prescribed workflows by rote. While staff provide insight into the technologies available for classroom use (in our instance, Andrew facilitates the integration of Axure with SVN and Gource), instructors design activities and assignments where these technologies are used to create materials they were not primarily designed to output (and share the results with staff administering the tools). Such collaboration allows for staff and faculty to approach the classroom as an environment for low-stakes failure, while continuing to prioritize student learning as the setting’s principal outcome.

As we continue to move forward based on these insights, we are considering how this form of faculty-staff collaboration can scale up from the level of the individual course. The final stage of our SEAM approach does just this, examining student progress longitudinally throughout the whole of the program and over the course of multiple years. Inspired by Donna Haraway’s formulation of cyborg subjectivities, this next stage of our work sees student autobiographies as reflexive records of where intersectional identities evolve alongside, and are imbricated with, the technologies with which they work. This research will analyze longitudinal student experiences through user story mapping, a technique commonly used to define priorities within agile software development. Software developers lead interviews and focus groups to understand how users’ expectations map to the offerings of their software. The scope of the user story mapping in software development is deliberately broad and shallow, narrowing the most possible use cases into minimum viable product releases. In order to catch the broadest perspective on student experience, we have chosen biographical information that demonstrates the student’s relationship to technology—their technobiography. The technobiographical method originally loosely outlined by Kennedy in 2003 has previously been applied to stories of learning by youth (Brushwood-Rose 2006) and educators (Ching and Vigdor 2005). By collecting, transcribing, and tagging biographical interviews, we intend to create a repository of user stories that can be drawn upon to help address infrastructure challenges holistically. The result will be a dynamic and searchable repository of student reflections on their learning experience that faculty and staff can consult in order to inform various levels of decision-making. As the repository grows over time, it will allow additional insight into how student learning in our digital humanities curriculum changes longitudinally. While the idea of a “minimum viable product” seems inherently reductionist, the goal is not to produce static or artificial boundaries around the learning experience, rather to set priorities and outline critical paths to completion relative to external factors (e.g., time, money, space, goodwill). Our students’ narratives tell us as much about the subjectivities that move through our learning systems as they reframe the systems-level formulations to which infrastructure, by necessity, reduces human experience.

Scaffolding upon the reflective assignments introduced alongside Gource visualizations of student work, we intend to collect student autobiographies as they move throughout the program and across multiple years. This will result in a searchable database of key challenges and successes encountered by student teams over time, revealing key inflection points in the development of our infrastructure and our curriculum (such as our 2014 failures associated with version control and our 2019 failures with the NTFS filesystem). As we continue with this work and gather findings over multiple years, we envision our method and the data it generates as an autobiography of long-term growth and adaptation in Brock University’s Centre for Digital Humanities. While digital humanities spaces continue to disseminate news of progress and successes, we believe they can also share key failures as part of a productive and forward-looking institutional narrative. What are the stories behind the technologies and best practices incorporated into our labs and our curriculum? How might student experiences of technological failure inform decision-making processes when it comes time to purchase new workstations, format hard drives, and set up server space for student work? Through their own stories about themselves and how they change over time, our students and their experiences of failure may reveal much of ourselves—our intellectual values, our operating principles, and what we may still become.

Bibliography

Bogost, Ian. 2010. Persuasive Games: The Expressive Power of Videogames. Cambridge, MA: The MIT Press.

Brushwood-Rose, Chloë. 2006. “Technobiographies as Stories of Learning.” Public 34 (Fall): 88–95.

Ching, Cynthia and Linda Vigdor. 2005. “Technobiographies: Perspectives from Education and the Arts.” First International Congress of Qualitative Inquiry (May): 1–22.

Flanders, Julia. 2019. “Building Otherwise.” In Elizabeth Losh and Jacqueline Wernimont, eds. Bodies of Information: Intersectional Feminism and the Digital Humanities (289–304). Minneapolis: University of Minnesota Press.

Freire, Paulo. 2017. Pedagogy of the Oppressed. New York: Continuum.

Henwood, Flis, Helen Kennedy, and Nod Miller. 2001. Cyborg Lives: Women’s Technobiographies. York, UK: Raw Nerve.

Juul, Jesper. 2009. “Fear of Failing? The Many Meanings of Difficulty in Video Games.” In The Video Game Theory Reader 2, edited by Mark J.P. Wolf and Bernard Perron, 237–252. New York: Routledge. https://www.jesperjuul.net/text/fearoffailing/.  

Liu, Alan. 2017. “Drafts for Against the Cultural Singularity (book in progress).” Lit.english.ucsb.org, February 20, 2017. http://liu.english.ucsb.edu/drafts-for-against-the-cultural-singularity.

Mauro, Aaron, et al. 2017. “Towards a Seamful Design of Networked Knowledge: Practical Pedagogies in Collaborative Teams.” Digital Humanities Quarterly. http://www.digitalhumanities.org/dhq/vol/11/3/000322/000322.html.

Nowviskie, Bethany. 2013. “Resistance in the materials.” Nowviskie.org, January 4, 2013. http://nowviskie.org/2013/resistance-in-the-materials/.  

Patton, Jeff, Peter Economy, Martin Fowler, Alan Cooper, and Marty Cagan. 2014. User story mapping: discover the whole story, build the right product. Beijing: O’Reilley.

Posner, Miriam. 2016. “Here and There: Creating DH Community.” In Matthew Gold, ed. Debates in the Digital Humanities. Minneapolis: University of Minnesota Press. http://dhdebates.gc.cuny.edu/debates/text/73.  

Unsworth, John. 1997. “Documenting the Reinvention of the Text: The Importance of Failure.” The Journal of Electronic Publishing 3.2 (December). https://doi.org/10.3998/3336451.0003.201.

About the Authors

Andrew Roth is the Technical Associate: Research and Learning Support in the Centre for Digital Humanities, Brock University. An exhibited artist and published interdisciplinary scholar, he has led and collaborated in augmented reality experiences, the development of published mobile apps, and the creation of tools for digital media artists.

Alex Christie is Assistant Professor of Digital Prototyping at Brock University’s Centre for Digital Humanities. In 2017, he completed the Pedagogy Toolkit project, which received grant support from the Association for Computers and the Humanities. In 2018, he served on the organizing committee for the Digital Pedagogy Institute.

Students sitting on the ground at a museum smile and discuss the 3D printed antiquity replicas they're discussing.
0

Animating Antiquity: Student-Generated Approaches to Recontextualizing Ancient Artworks using Digital Technologies

Abstract

Animating Antiquity was a student-generated curatorial project undertaken at the University of Miami in the Spring of 2019. The project consisted of multifaceted approaches to recontextualizing the ancient artworks in the Lowe Art Museum at the University of Miami. Ancient objects were functional at their core, but their display in a museum setting makes it difficult to recreate and understand their original significance and context. Through the use of digital tools—3D modeling and printing, and extended reality technologies—this project aimed to reinsert these objects into their original settings, reanimate their tactility and functionality, and form new modes of interaction with artworks in the space of the museum and the virtual realm. Students engaged in hands-on, museum-based learning through the compilation of art historical research contextualizing the objects; the creation of 3D digital models and prints; and the design of interactive strategies in real world and virtual environments. The Animating Antiquity Project combined multiple innovative technologies, pedagogical strategies, and community outreach to provide students with transferable professional skills and expertise while expanding the boundaries of the museum and connecting people and objects in innovative ways. This paper discusses the pedagogical and technical strategies employed during the project, foregrounding the approaches generated by undergraduate and graduate students.

Introduction

The Animating Antiquity Project was funded by a CREATE grant from the Mellon Foundation, whose aim is to foster the connection between students and cultural resources on the University of Miami campus (University of Miami Libraries and Lowe Art Museum 2019). The project was implemented in an interdisciplinary course, Greek and Roman Art (ARH 333P/CLA226P), co-taught by Professors Karen Mathews (Art and Art History) and Han Tran (Classics) in the Spring Semester of 2019. Twenty-one undergraduate students in the course undertook a curatorial project to recontextualize eight ancient objects in the Lowe Art Museum at the University of Miami, using various digital technologies to recreate and understand their original function and context (Lowe Art Museum 2019). Students devised multifaceted ways of reanimating antiques for visitors to the Lowe; research dossiers provided information about the function, context, and historical background of the objects, 3D digital models allowed viewers to manipulate the artwork and experience it in the round, 3D prints incorporated the elements of tactility and interactivity, while augmented reality (AR) and virtual reality (VR) experiences inserted the ancient artworks into new, virtual contexts. The innovation of this project resides in the student use of digital technologies to facilitate the staging of interactions between viewers and objects, creating a complex interplay between original, digital model, and printed replica in various spaces and modes—the museum gallery, a new space viewed through a smartphone, or an immersive virtual reconstruction.

The educational practices embedded for this project were guided by multiple components including: 1) program and course student-learning outcomes within the art history and classics BA programs 2) previous research undertaken by the authors in their respective fields of art history and digital education 3) emerging research and literature involving digitization within education 4) theoretical frameworks of historical preservation 5) and previous implementation of a similar project led by the authors (see footnote 1). The collaborative, pluralistic, and hands-on approach to the study of ancient art provided the most profound outcomes for students involved in the Animating Antiquity Project, as undergraduate and graduate students engaged in traditional and emerging methodologies associated with museum work. The project therefore informed the course workflow, including the weaving of content-specific lectures and classroom discussions, technical workshops with project partners, visits to the museum, student conferences, and several project assignments. The incremental design of coursework allowed students to create and present what they learned in different ways while facilitating instructor feedback and assessment. Through the creation of an art historical dossier, undergraduate student teams gained knowledge in interpretative analysis and research of primary and secondary sources, demonstrated their understanding of art historical terminology, and effectively synthesized their findings through documentation, in-class discussions, a project website, and a final presentation. The digitization and fabrication of antiquities gave students the rare opportunity to interact closely with precious historical artifacts often overlooked within the museum. Students engaged in a variety of tasks including photographing objects and hands-on technical workshops to produce materials for museum patrons, including digital and tangible facsimiles of each artifact. The creation of interactive strategies for museum visitors (activities that encourage interaction with the 3D print of the digital model and create a dialogue between the 3D print and the real object) allowed students to become instrumental in providing solutions to remove visual or tactile restrictions in a visitor’s engagement with objects. The final element of the project involved cross-program partnerships, where graduate students leveraged the dossier, 3D digital models, and prints to design augmented and virtual reality applications and employ the technical knowledge from their coursework within a practice-based museum context.

Many of these digital technologies and pedagogical approaches have been deployed in museum and higher education institutions over the past few years (Balletti, Ballarin, and Guerra 2017; Flynn 2018; Grayburn et al. 2019; Jeffs et al. 2017; Saunders 2017; Schofield et al. 2018; Younan and Treadaway 2015). Similar pedagogical approaches that align with this project address: the handling of objects, transformations in interpretation, the recontextualization of heritage, and approaches to digitizing, editing, and fabricating 3D digital heritage. At the Victoria University of Wellington, New Zealand, an initial partnership between the schools of Industrial Design and Classical Studies used 3D scans and prints of antiquities to lessen students’ fear of handling objects by having them recreate the original function of the object (Guy, Burton, and Challies 2018; Victoria University of Wellington 2017). At the University of South Florida, undergraduate students participated in a crowdsourcing project to digitize heritage artifacts at the Archaeological Museum of Syracuse and create digital storytelling guides (Bonacini, Tanasi, and Trapani 2018). For almost a decade, Duke University’s Wired! Lab for Digital Art History & Visual Culture has transformed its program offerings to respond to digital technologies within the fields of art and architectural history, involving students in the digital reconstruction of heritage in a variety of contexts (Lanzoni, Olson, and Szabo 2015; Wired! Lab 2019). Recent research (Di Franco et al. 2015; Pollalis et al. 2018) has also addressed hands-on engagement with digital and 3D printed objects from the perspective of undergraduate students. As such, digital technologies within art history and classics curricula have spurred the transformation of higher education practices.

Finally, this project was guided by conceptual frameworks that address the complex relationship between humans and objects. Material culture studies have highlighted the central role of objects in human thought and action (Hicks and Beaudry 2010; Tilley et al. 2006). Specifically, thing theory argues for the active role of objects in defining human actions, giving something inanimate a rich biography and social life (Appadurai 1986; Brown 2001; Kopytoff 1986). Within the project, the artifacts were central actors in the design of the course assessments, the project components, and the student interaction with the antiquities. As student teams advanced throughout the project, the artifacts adopted new meanings through content generated by the students. Students were encouraged to make historical inferences about these objects to develop an original narrative about their history. As a result, the relationship between students and the objects was multifaceted and symbiotic, as objects interact with people and other objects to produce unexpected effects, strengthening or redefining pre-existing social or cultural relationships, or forging completely new connections (Mathews 2015). Furthermore, a significant outcome of this project was the incorporation of graduate students, who were encouraged to present their perspective on the role of the museum, its objects, and visitors. The interaction between people and objects therefore locates artworks in a constant state of redefinition as they engage with human actors in different spatial and temporal contexts (Figure 1).

Diagram connecting the center project component, art historical research and 3d modeling, with three resulting project components, 3D printing, augmented reality application and virtual reality installation.
Figure 1. Visual diagram of the Animating Antiquity Project components.

This paper will outline the implementation and outcomes of the Animating Antiquity Project, addressing the key components of the project—the creation of an art historical research dossier, 3D digital models of ancient artworks, prints of 3D models, interactive strategies for the printed models, and a website presenting student research—in chronological order. A discussion of the creation of an art historical research dossier and digital 3D models for eight artworks in the Lowe Art Museum will be followed by a description of the varied applications of these core materials for interactive strategies that forged creative connections between ancient objects and modern viewers. This paper therefore seeks to demonstrate the rich and multifaceted relationships between people and objects that were forged through the use of digital technologies in the museum and classroom and share the pedagogical methodologies and outcomes associated with this project with the wider academic community.[1]

Art Historical Dossier and 3D Digital Models

Art historical dossier

The research conducted for the art historical dossier served as the first reanimation of ancient artworks in the Lowe, as the students began to understand the role that objects like glass vessels, ceramic wares, and portrait sculpture played in the ancient world. In their present configuration, the antiquities at the Lowe Art Museum reside in glass display cases with minimal background information and limited opportunities for visitor interaction. In order to foster a deeper understanding of these antiquities, students conducted art historical research on the eight objects chosen for 3D modeling and compiled that research in digital dossiers. The research focused particularly on the function and context of the artworks, as all ancient art served a purpose, be it political, religious, economic, or social. The research materials consulted by the students were eclectic in nature, given the lack of documentation on these specific objects. Students consulted dossiers on file at the Lowe Art Museum, art historical materials and practical guides from other museums and cultural organizations, scholarly books and articles, and web-based resources to understand and contextualize these ancient objects. The analysis of the antiquities began with a basic physical description, extracting visual information from the object itself. Then the students delved deeper into the history of ancient Greece and Rome to understand how these objects functioned, where they would have been placed and used, and how they would have been perceived by ancient audiences.

The subdividing of the written elements into thematic units facilitated the writing process. Students could concentrate on one topic at a time—function, iconography, context—and also review peer feedback that they could revisit and revise (Carless and Boud 2018). In the final stages of the dossier’s creation, the students worked on the text as a whole, making it flow as a seamless narrative, omitting redundancies and focusing the text on a particular theme related to the object itself. The preparation of the art historical dossier served a number of purposes: familiarizing the students with objects and their meaning in original contexts; creating the foundation for student-generated interactive strategies; and providing background information on the objects for visitors to the Lowe Art Museum. This original research conducted by the students provided a key outcome of the project, as most of these objects have not been studied in a systematic manner. The Canosan vase, for example, is a fairly common object, but this type of pottery has not been addressed extensively in the scholarly literature (Figure 2). In the absence of basic data, students researched comparable objects to make scholarly inferences about the artworks in the Lowe, collecting comparative materials with which to support their conclusions. The completed art historical dossier consisted of the following elements: a document presenting a visual description of the object and discussing its form, function, and original context; a photograph of the object; the 3D digital model; and images of comparable artworks. This research dossier was shared on Google Drive so that all the students devising interactive strategies would have access to this important contextual information.

Portrait and side profile of Greek Canosan funerary vessel, decorated with two female figures, next to portrait and side profile of a comparative work.
Figure 2. Canosan funerary vessel, Lowe Art Museum, 98.0009, and a comparative work.

In the final phase of the project, the dossier was uploaded onto a website that serves as the public portal to the research project [https://www.animatingantiquity.net]. Students were encouraged to review the Spring 2018 digital dossier (see footnote 1) as an ‘exemplar’ to illustrate assessment expectations (Carless and Boud 2018). Using WordPress, students created posts for each of the eight objects featured in the class project (Figure 3). Once uploaded to Sketchfab (a web platform for hosting and viewing immersive and interactive 3D files), the digital model was embedded within the post so that visitors could review still photographs and interactive 3D models while reading the text. The content of the website is accessible in the immediate context of the museum itself through a tablet mounted on a pedestal next to the artworks on display, so visitors can gain knowledge about the object while viewing it firsthand and performing the interactive strategies described on the website.

Project homepage including the project overview next to the calyx krater page depicting a gallery, interactive 3D model, and text.
Figure 3. Animating Antiquity website homepage and calyx krater page.

3D digital models of ancient artworks

In addition to the dossier, the creation of the 3D digital models profoundly influenced new interpretations and re-presentations of the objects (Kalay 2008, 8). Harrison (2015) proposes that heritage is inseparable from the interconnected relationships between social, political, and environmental issues. The 3D digitization process and the digital and fabricated objects invited conversations with students about conservation, management, and ethical implications of heritage artworks. As the fragility and antiquity of the artworks limited engagement with them, students were tasked with the design of digital and physical reproductions for the public to touch. The process of photographing the objects introduced students to the careful protocols established by museum staff for handling antiquities in order to ensure their proper conservation. Indeed, students contributed to the conservation of these artworks by creating 3D digital versions of the originals and compiling a set of photographs that documented the current state of the object. The ethical implications connected to fabricating artifacts were also discussed with students, encouraging them to consider the implications of creating digital copies of original artworks and the ways in which they could alter the meaning of the ancient artworks (Colley 2015).

Students created the 3D digital models in a multi-step, group-based, collaborative process, in which tasks related to the various components rotated through each student group. Everyone contributed to all the interrelated parts and the students themselves were responsible for the completion of the digital model. Objects were selected based on their applicability for photogrammetry, and students created the 3D models of these artworks in three 75-minute hands-on workshops. First, the photogrammetry session at the Lowe Art Museum allowed students to capture multiple photographic viewpoints of the objects outside the display case, transforming how they usually interact with artworks. Eight students (two from each group) served as “digital preservation experts,” engaging with museum staff during the session as collaborators in the photography process. Museum staff installed, handled, and rotated the pieces while students determined the most effective ways to capture each object (Figure 4).

Two images depicting students taking photos of artefacts within the museum, while museum staff observe.
Figure 4. Students conducting photography using DSLR cameras and lighting soft boxes.

Students were provided some initial guidance and allocated an hour to capture the artworks. They checked the assembled equipment for any discrepancies, decided which object they would photograph, communicated with the museum staff to place objects, prepared and tested the camera settings, and completed four 360° rotations to ensure adequate overlap of focused photos at multiple camera angles to capture complex sculptural contours.[2] They then uploaded the files to a shared Google Drive folder.

Post session, two different students per group took the lead in editing raw photos, exporting them for photogrammetric processing using Autodesk ReCap Pro Photo. Once processed and downloaded, the files were reduced in size and exported for students to edit with Autodesk Meshmixer. Two modeling sessions completed the process of creating the 3D digital models. In the first session, two students per group edited mesh files, learning how to repair holes in the mesh, add surface texture to the model, and create a clean base. Students were encouraged to interact with the artworks in the digital realm, dismantling the object, creating new shapes, sculpting and adding textures to the reconstructed artwork. In this part of the process, emphasis was not placed on absolute accuracy, but rather on an authentic presentation of the digital object. With help from the authors and student assistants, timely, personalized feedback (Carless and Boud 2018) was shared with each student to prepare for the second modeling session in which further editing tasks were performed to prepare the files for uploading to Sketchfab and for 3D printing.[3] Once the 3D models were completed, the authors uploaded the .OBJ files onto Sketchfab. Students then created annotations for the digital models, noting aspects of the object’s iconography, material, and technique in short texts that can be read while manipulating the model (Figure 5). The publishing of the annotated models on a well-known website platform constituted another reanimation of these antiquities, as the digital model and its descriptive annotations bridged the distance between visitors, students, and the wider public audience.

3D digital models of the bearded roman and calyx krater objects captured with numbered annotations.
Figure 5. 3D digital models with annotations on Sketchfab.

Student-Generated Applications of Art Historical Research and 3D Digital Models

Reconstructing artworks through 3D printing

The 3D prints actualized the premise of the Animating Antiquity Project, bringing alive the culture of ancient Greece and Rome through a recontextualization of ancient artworks while creating new, contemporary connections between people and objects. The digital models themselves served an important didactic function, providing museum visitors with a more comprehensive understanding of an artwork through the manipulation of the digital model (Jeffs et al. 2017), but they also served as the basis for creating prints of the models that could be handled in the museum gallery. Complementing photographs and the digital model, the 3D print provided a third visual manifestation and reanimation of the object, replicating the art object in an accurate manner through its size and material. The printed replicas were painted to recreate the decoration on the artworks and provided viewers with tactile access to the objects. In museum settings, 3D prints of artworks allow visitors to engage with art in a more intimate way, complementing the original works in the display case and providing opportunities for blind and visually impaired visitors to experience art objects (Di Franco et al. 2015; Henderson 2018; Nancarrow 2017; Sportun 2014; Williams 2017; Wilson et al. 2018).

Two images depicting multiple students and faculty sitting in the museum, talking and handling 3D prints of antiquities.
Figure 6. Students handling draft 3D prints at the Lowe Art Museum.

The 3D printing of digital models was essential for the interactive activities described below. The printing component was ambitious and interdisciplinary in scope, with a number of individuals, spaces, and institutions contributing to its successful completion. The digital models were prepared for 3D printing by students in Meshmixer with additional refinements made by the authors. Digital versions of vessels, for example, required thickened surfaces for structural integrity or were hollowed out so that they could be printed as vessels. After the first modeling session, ‘draft’ 3D models were printed at a reduced scale in polylactic acid (PLA) filament for students to handle, evaluate, and employ in devising interactive strategies (Figure 6). The remaining modeling edits and student-generated strategies informed the number, scale, and structure of the 3D prints.

The printing workflow entailed dividing the objects between makerspaces in the College of Engineering, the Department of Art and Art History, and an Ultimaker 3 managed by Academic Technologies.[4] As the Engineering printers could also accommodate larger-scale objects, most models were printed to emulate the scale of the original artwork.[5] Prints were made using various PLA filament types, with a marble-like filament emulating the crystalline structure of stone sculpture, while wood-fiber and terracotta-colored plastic reproduced the original materials of other ancient objects. Printing times could vary from three to thirty-six hours per object, so the completion of these prints was scheduled over a month time frame, anticipating printing errors and print queue issues while accommodating other users on campus. Once the prints were ready, students prepared models for painting. Some models remained unpainted, as the PLA imitated the original material of the artwork, but others had their original polychromy “restored” or were painted to more closely emulate the original decoration (Figure 7). Students in this phase of the project could interact freely with the models in ways that would be impossible with the original artwork, emulating the original use of the objects in their handling and manipulation.

Landscape view of a table display presenting multiple 3D printed versions of antiquities within the Lowe Art Museum.
Figure 7. Display of completed prints in the Lowe Art Museum.

Undergraduate student strategy: Restoration of the Canosan funerary vessel

The 3D prints provided the opportunity for an imaginative reconstruction of the object. Instead of copying the current state of an artwork, prints can recreate the original, often vibrant, decoration of ancient objects. The Canosan vessel print, for example, displays the bright primary colors that would have characterized this funerary offering in its original state (Figure 8). The comparison between the modern copy and the artwork itself presents significant historical information about material culture in the ancient world.

Two images depicting the process of students and faculty painting the Canosan vase using primary colors. One final image presents the finished object painted in blue, red and yellow.
Figure 8. “Restoring” the color of the Canosan funerary vessel print.

Undergraduate student strategy: Recreating Theseus and the labyrinth

Student-generated strategies strove to combine three versions of the same object—original, digital model, and 3D print—in order to animate the artwork for museum visitors. These interactions could highlight the form and iconography of the object or shed light on its function and original context. The interactive strategy devised for the double-headed sculpture of Theseus and Ariadne focused on the duality and complementarity of the two figures portrayed (Figure 9).

Three images depicting a two headed Theseus and Ariadne sculpture, including two portrait views and a side profile view.
Figure 9. Theseus and Ariadne sculpture, Lowe Art Museum, 2005.7.2.

For the 3D print, the students separated the heads to emphasize the distinct characteristics of each figure but also the complementary nature of the pair. Added to the Theseus print was a maze representing the labyrinth that he had to negotiate with the help of Ariadne to kill the Minotaur. Ariadne gave Theseus a ball of thread so that he could trace his way out of the maze. In the gallery activity, a stylus attached to a string on the Ariadne side traces the path of Theseus through the maze, demonstrating the cooperation between the couple that helped them destroy their monstrous adversary (Figure 10). Color-coded pins inserted into the print provided information about the myth in stages so that viewers can follow the path of the protagonist and discover the intertwined nature of these two mythological figures.

Three side-profile images depicting the 3D printed two headed Theseus and Ariadne sculpture, cut in half with a maze visible.
Figure 10. Theseus and Ariadne 3D prints with maze.

Undergraduate student strategy: Simulating the calyx krater’s function at the symposion

A third interactive strategy recontextualizes the calyx krater and the role it played in the ancient Greek symposion, a gathering of Greek men who engaged in conversation, listened to music, and enjoyed entertainment while drinking wine mixed with water. The mixing of the two liquids was essential for ensuring the longevity of the symposion and displayed the civilization of the Greeks, as only “barbarians” drank unmixed wine. The krater was the vessel used to combine water and wine and was thus an indispensable component of the symposion itself. The imagery on this krater alludes to its function, representing the god of wine, Dionysus, and his followers in a procession (Figure 11).

Three images depicting the Calyx krater displayed at three rotated angles
Figure 11. Calyx krater, Lowe Art Museum, 2011.5.

The interactive activity recreated the symposion environment by distributing a number of smaller drinking vessels to the “participants” of the gathering while demonstrating the dilution of the wine central to this ritualized activity. The interactive strategy highlighted the function of the krater while elucidating the iconography of the vessel (Figure 12).

Three images depicting a full-scale 3D printed calyx krater decorated, multiple small-scale 3D printed calyx kraters in red and black, and students demonstrating the pouring of water in the krater.
Figure 12. Student-generated 3D prints of the calyx krater and reconstruction of wine mixing.

Interdisciplinary work by MFA students

Though the content of the Animating Antiquity Project was devised in the context of an undergraduate course, MFA students from two different schools designed and implemented their own creative engagements with 3D models and prints using the art historical dossiers and digital models created by the undergraduates. One project emerged through a graduate student’s exploration of makerspaces across the UM campus and the potential of 3D printing as a creative sculptural medium. Two additional projects developed through partnerships with students in the MFA program of Interactive Media at the School of Communication. Enrolled in courses dedicated to the study and implementation of AR and VR technologies, these graduate students used the content created by undergraduate students to design interactive approaches with the Lowe antiquities. The undergraduates, then, served as the experts in terms of knowledge of the art objects themselves and in terms of the creation of raw digital data. Through shared Google Drive folders, graduate students could access all the work folders and employ the raw materials compiled by the undergraduates in innovative technological formats.

MFA student project: Experimentation with 3D modeling and printing (Monica Travis)

The greatest experimentation with printing materials took place with the reproduction of a Hellenistic theater mask by Monica Travis, MFA student in sculpture in the Department of Art and Art History. The theater mask is a bronze object, and Monica wished to print it in metal to emulate the original material. The Johnson & Johnson Lab in the College of Engineering possesses a metal 3D printer that produces parts with titanium powder, and these advanced facilities provided the opportunity to print the bronze theater mask in a metallic medium, that of titanium. This printer is often used for the prototyping of parts, so the printing of an art object constituted an innovative application of its capabilities. Monica undertook a meticulous preparation of the file for printing, editing photographs in Adobe Photoshop and processing them in Agisoft Metashape, an advanced photogrammetry tool. The modeling application Rhinoceros was used to clean up the model and prepare it for printing. A test print was performed using a Lulzbot Taz 6 in the Department of Art and Art History before queuing it on the titanium printer (Figure 13). This project provided an opportunity for Monica to innovate in both the methods and materials used; she experimented with photogrammetry, photographic editing, and modeling tools to produce a print using materials not often employed in 3D printed artworks.

Three images depicting multiple versions of the Theatre mask in yellow PLA, titanium and wood PLA.
Figure 13. Theatre mask (left to right) in PLA filament; Titanium print; all 3D prints in PLA, titanium, and wood-PLA filament.

MFA student project: Antiquities in real world contexts using augmented reality (Jinqi Li, MacKenzie Miller, Laura Miller, Aishwarya Navale)

In the context of a course offered in the School of Communication at the University of Miami, graduate students from the MFA Interactive Media program created two AR applications using the student-generated digital models of the Lowe antiquities.[6] The concept behind both apps was to enhance visitor interaction with the objects using a smart device (Marques and Costello 2018). The first AR application allows museum-goers to observe the antiquities up close in 3D. Users employ a brochure that serves as the platform for the experience, allowing them to use the app anywhere. The brochure possesses four recognizable image targets that trigger the AR program when a device’s camera is directed at them (Figure 14). When the image target is detected, users view the rotating digital model on their mobile screen, supplemented with audio narration addressing significant information about the artwork. To create the first application, the students used Vuforia Augmented Reality SDK in Unity 3D to enable the image target detection of the artifacts. Dr. Mathews recorded the audio that was used in the application, and a rotation effect was added so that the viewer could see the artifact from all angles. Lastly, the application was exported to a mobile phone using Xcode.

A landscape brochure detailing four models used for image targets in the augmented reality experience
Figure 14. Brochure for AR experience.

The second application enables museum visitors to take the artworks home with them virtually, observe the objects in new contexts, and share their experiences on social media platforms. Users of this application scan a room and then project the 3D model of the object onto that space. The object can be resized and moved around the room to the ideal virtual setting, and the user can then photograph it and share it. The students used ARKit SDK in Unity 3D to make an application where a virtual object can be placed in the real world. A menu allows the user to choose the object they would like to place in a new real-world context (Figure 15). Both of these AR applications used digital models and art historical research to connect people and objects through interactive experiences. The users of these AR applications learn more about the objects in a personalized manner, employing a smart device as a tool to display and manipulate the 3D models, place the antiquities in novel contexts, and share their interactions with others.

Three panes representing the user perspective of using the augmented reality application including instructions, digital model placed on ground and annotations.
Figure 15. AR application with photo “souvenir” capabilities.

MFA student project: Feeling Antiquity in virtual reality (Lorena Lopez)

This virtual reality (VR) experience attempts to show the myriad ways in which immersive environments can enhance a visitor’s understanding of artworks in a museum setting by emphasizing the power of touch. Both museum and VR experiences generally lack a tactile component, that is, the ability to touch objects in real and virtual spaces (Candlin 2010; Candlin 2017). In the Feeling Antiquity experience, visitors can interact with a 3D print in a virtual realm. The object selected for the VR experience was the calyx krater, a vessel that was used to mix wine and water in the context of the symposion (Figures 11 and 12). As part of a summative project to demonstrate her knowledge and construction of virtual worlds, Lorena Lopez used the art historical dossier created by undergraduates to study the physical setting of the symposion, a space called an andron that was used exclusively by males. Using the Unity Game engine and its asset store, she constructed the 3D scene where men would gather for the symposion and hold the krater (Totten 2014). Through an HTC Vive Pro VR headset, the viewer was immersed into the ancient Greek space of the andron. Once there, the user of the headset could interact with a full-scale print of the calyx krater, touching and picking up the printed model of the vessel using the handheld controllers (Figure 16). The virtual visitor was not only transported to the ancient past, but they could reach out and actually touch an object within the space of the andron. In a museum setting, the sense of touch is generally subordinated to the visual, as visitors are discouraged and prohibited from touching artworks (Di Franco et al. 2015). VR can break down these barriers and allow museumgoers to engage art with more than just vision, handling ancient artworks in the same way that they would have been used in the past. There are great, but still untapped, possibilities in the realm of haptic gloves and suits, though handheld controllers were used in this experience in the interest of time (Needleman 2018; Hall 2016). These VR technologies can animate places and objects that are distant geographically or no longer extant, integrating touch into an interactive and immersive environment that complements and enhances a museum experience.

Graduate student wearing a virtual reality headset in front of a projector displaying a room, and standing next to a table displaying a black 3D printed version of the calyx krater.
Figure 16. VR experience with the calyx krater.

Conclusion: Outcomes and Reflections

In the context of the spring semester course, students successfully completed all the stated objectives: the creation of an art historical dossier, a digital model, a 3D print, strategies for visitor interaction with the 3D print, and a website. What was actually gained from this experience, however, was far richer. The interdisciplinarity and interactivity of the work conducted established meaningful connections between the students and the objects they studied. Students were exposed to numerous ways in which research and digital content could reanimate ancient objects. They also gained invaluable, hands-on practice with various digital technologies and processes, helping them determine where their personal interests and talents lay, be it in painting, 3D modeling, printing, or photography. The implementation of this project did pose some challenges, as the production schedule for the multiple components had limited flexibility, and a less-condensed time frame would have allowed for more exploration and mastery of research and technical skills. The display of 3D prints and implementation of XR technologies also raise ethical and logistical issues concerning the use of digital technologies in traditional museum spaces (Colley 2015, 17). Where do you stage such interactive experiences, and who provides oversight and monitoring? AR applications can be integrated easily into museum galleries through the use of smart devices, but VR often requires expensive equipment, space for movement, and timed sessions (Meier 2017). Furthermore, while the 3D/XR digital assets created in this project aimed to align with existing imaging and digital preservation practices (Alliez et al. 2017; Bedford 2017), limited control of metadata is a topic being addressed by open communities and experts (Moore et al. 2019; Rossi, Blundell, and Wiedemeier 2019). Once these practical challenges are addressed, however, myriad possibilities exist for the use of digital products and technologies in museum and undergraduate education, as 3D prints and their interactive applications can play a central role in the pedagogical mission of museums, encouraging visitors to devise their own strategies for connecting to people and objects from the ancient past.

Notes

[1] Henderson and Mathews employed photogrammetry techniques in a Spring 2018 course at the University of Miami addressing Spanish colonial art objects in the Lowe Art Museum; see their website. Work on this course facilitated the creation of the lesson plans, digital technologies, and partnerships that informed the Animating Antiquity Project.

[2] The equipment assembled to photograph the models included four DSLR Canon Rebel cameras, four tripods, three portable photo studio kits, four rotating platforms, one photography tent, and one larger lighting soft box.

[3] The file of the theater mask required extensive editing, and a graduate assistant, Monica Travis, became a co-creator of the digital version, using her expertise in Rhino to separate the shells and extra data to create a 3D printable file.

[4] The authors organized the print queues and Monica Travis managed most of the printing.

[5] The College of Engineering has several Makerbot printers, with two in particular (Makerbot Replicator Z18) that boast an 18” Z (vertical build space) ideal for larger print projects. These printers are available to all students and the college provides filament for the printing projects.

[6] The course was CIM 624—Augmented Reality, taught by Dr. Ching-Hua Chuan. Monica Travis was instrumental in forging this collaboration.

Bibliography

Alliez, Pierre, Laurent Bergerot, Jean-François Bernard, Clotilde Boust, George Bruseker, Nicola Carboni, Mehdi Chayani, et al. 2017. Digital 3D Objects in Art and Humanities: Challenges of Creation, Interoperability and Preservation. White Paper. https://hal.inria.fr/hal-01526713.

Appadurai, Arjun. 1986. “Introduction: Commodities and the Politics of Value.” In The Social Life of Things: Commodities in Cultural Perspective, edited by Arjun Appadurai, 3–63. Cambridge: Cambridge University Press.

Balletti, Caterina, Martina Ballarin, and Francesco Guerra. 2017. “3D Printing: State of the Art and Future Perspectives.” Journal of Cultural Heritage 26 (July): 172–82. https://doi.org/10.1016/j.culher.2017.02.010.

Bedford, Jon, ed. 2017. Photogrammetric Applications for Cultural Heritage: Guidance for Good Practice. Swindon: Historic England. https://historicengland.org.uk/images-books/publications/photogrammetric-applications-for-cultural-heritage/.

Bonacini, Elisa, Davide Tanasi, and Paolo Trapani. 2018. “Participatory Storytelling, 3D Digital Imaging and Museum Studies: A Case Study from Sicily.” In 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), 1–4. San Francisco, CA, USA: IEEE. http://doi.org/10.1109/DigitalHeritage.2018.8810058.

Brown, Bill. 2001. “Thing Theory.” Critical Inquiry 28, no. 1: 1–22.

Candlin, Fiona. 2010. Art, Museums and Touch. Manchester: Manchester University Press.

———. 2017. “Rehabilitating Unauthorised Touch or Why Museum Visitors Touch the Exhibits.” The Senses and Society 12, no. 3: 251–66. https://doi.org/10.1080/17458927.2017.1367485.

Carless, David, and David Boud. 2018. “The Development of Student Feedback Literacy: Enabling Uptake of Feedback.” Assessment & Evaluation in Higher Education 43, no. 8: 1315–25. https://doi.org/10.1080/02602938.2018.1463354.

Colley, Sarah. 2015. “Ethics and Digital Heritage.” In The Ethics of Cultural Heritage, edited by Tracy Ireland and John Schofield, 13-32. New York: Springer-Verlag. https://www.springer.com/us/book/9781493916481.

Di Franco, Paola Di Giuseppantonio, Carlo Camporesi, Fabrizio Galeazzi, and Marcelo Kallmann. 2015. “3D Printing and Immersive Visualization for Improved Perception of Ancient Artifacts.” Presence: Teleoperators and Virtual Environments 24, no. 3: 243–64. https://doi.org/10.1162/PRES_a_00229.

Flynn, Thomas. 2018. “Explorable, Shareable 3D.” presented at the DigiDoc 2018, The Engine Shed, Edinburgh, October 15. https://web.archive.org/web/20190527204229/.

Grayburn, Jennifer, Zack Lischer-Katz, Kristina Golubiewski-Davis, and Veronica Ikeshoji-Orlati, eds. 2019. 3D/VR in the Academic Library: Emerging Practices and Trends. Council on Library and Information Resources Publication 176. https://www.clir.org/wp-content/uploads/sites/6/2019/02/Pub-176.pdf.

Guy, Bernard, Diana Burton, and Zach Challies. 2018. “Creative Expression through Tangible Narrative: How 3D Printing May Complement Our Pedagogical Investigation of Heritage.” In 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), 1–4. San Francisco, CA, USA: IEEE. http://doi.org/10.1109/DigitalHeritage.2018.8810121.

Hall, Charlie. 2016. “Welcome to The Void.” Polygon. May 5. https://www.polygon.com/features/2016/5/5/11597482/the-void-virtual-reality-magician-tracy-hickman.

Harrison, Rodney. 2015. “Beyond ‘Natural’ and ‘Cultural’ Heritage: Toward an Ontological Politics of Heritage in the Age of Anthropocene.” Heritage & Society 8, no. 1: 24–42. https://doi.org/10.1179/2159032X15Z.00000000036.

Henderson, Gemma. 2018. “Exploring the Meanings of 3D Digital Heritage Objects in Undergraduate Education.” MSc Dissertation, University of Edinburgh.

Hicks, Dan, and Mary C. Beaudry. 2010. The Oxford Handbook of Material Culture Studies. Oxford: Oxford University Press.

Jeffs, Amy, Fern Insh, Erich Hatala Matthes, Tom Flynn, Daniel Pett, Tim Ayers, et al. 2017. “Disciplining the Digital: Virtual 3D Reproduction, Pilgrim Badges, and the Stuff of Art History.” British Art Studies, no. 6 (June). https://doi.org/10.17658/issn.2058-5462/issue-06/conversation.

Kalay, Yehuda. 2008. “Introduction: Preserving Cultural Heritage through Digital Media.” In New Heritage: New Media and Cultural Heritage, edited by Yehuda E. Kalay, Thomas Kvan, and Janice Affleck, 1-10. London: Routledge.

Kopytoff, Igor. 1986. “The Cultural Biography of Things: Commoditization as Process.” In The Social Life of Things: Commodities in Cultural Perspective, edited by Arjun Appadurai, 64–91. Cambridge: Cambridge University Press.

Lanzoni, Kristin, Mark Olson, and Victoria Szabo. 2015. “Wired! And Visualizing Venice: Scaling up Digital Art History.” Artl@s Bulletin 4 (1). https://docs.lib.purdue.edu/artlas/vol4/iss1/3.

Lowe Art Museum. 2019. “Lowe Art Museum | University of Miami.” Lowe Art Museum | University of Miami. https://www.lowe.miami.edu/.

Marques, Diana, and Robert Costello. 2018. “Concerns and Challenges Developing Mobile Augmented Reality Experiences for Museum Exhibitions.” Curator: The Museum Journal 61, no. 4: 541–58. https://doi.org/10.1111/cura.12279.

Mathews, Karen Rose. 2015. “Decorating with Things: Spolia as Material Culture in the Italian Maritime Republics, 1100–1300.” bfo-Journal 1 (2015): 4–13. http://bauforschungonline.ch/sites/default/files/publikationen/mathews.pdf.

Meier, Allison. 2017. “Walk Inside a Gothic Prayer Bead in a VR Experience at the Cloisters.” Hyperallergic. February. https://hyperallergic.com/361000/walk-inside-a-gothic-prayer-bead-at-the-cloisters/.

Moore, Jennifer, Adam Rountrey, Hannah Scates Kettler, and Community Standards for 3D Data Preservation. 2019. “Community Standards for 3D Data Preservation (CS3DP).” Community Standards for 3D Data Preservation (CS3DP). http://gis.wustl.edu/dgs/cs3dp/.

Nancarrow, Jane-Heloise. 2016. “Democratizing the Digital Collection: New Players and New Pedagogies in Three-Dimensional Cultural Heritage.” Museum Worlds 4, no. 1: 63–77. https://doi.org/10.3167/armw.2016.040106.

———. 2017. “Emotions3D: Remediating the Digital Museum.” In The Routledge Research Companion to Digital Medieval Literature, edited by Jennifer Boyle and Helen J. Burgess, 199-211. London: Routledge. https://doi.org/10.4324/9781315696041-14.

Needleman, Sarah E. 2018. “Virtual Reality, Now With the Sense of Touch.” Wall Street Journal, April 3, sec. Life. https://www.wsj.com/articles/virtual-reality-now-with-the-sense-of-touch-1522764377.

Outhwaite, William, and Stephen Turner, eds. 2007. The SAGE Handbook of Social Science Methodology. London: Sage Publications.

Pollalis, Christina, Elizabeth Joanna Minor, Lauren Westendorf, Whitney Fahnbulleh, Isabella Virgilio, Andrew L. Kun, and Orit Shaer. 2018. “Evaluating Learning with Tangible and Virtual Representations of Archaeological Artifacts.” In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction, 626–637. TEI ’18. New York, NY, USA: ACM. https://doi.org/10.1145/3173225.3173260.

Rossi, Vince, Jonathan Blundell, and Ralph Wiedemeier. 2019. “The Smithsonian Open Source 3D Pipeline – from Preservation and Processing to Authoring and Delivery.” Presented at 2+3D Photography-Practice and Prophecies 2019, Rijksmuseum, Amsterdam, May 10. https://docs.google.com/presentation/d/15dfHl-Cij89nZvSy47_FOmFFWD8OIc7TvOCr_DZ8yLc/edit?usp=sharing.

Saunders, Sarah. 2017. “Students Use 3D Printing Technology to Interact with Ancient Greek Artifacts at Victoria University of Wellington’s Classics Museum.” 3DPrint.Com / The Voice of 3D Printing / Additive Manufacturing. July 31. https://3dprint.com/182487/3d-printed-greek-amphora/.

Schofield, Guy, Gareth Beale, Nicole Beale, Martin Fell, Dawn Hadley, Jonathan Hook, Damian Murphy, Julian Richards, and Lewis Thresh. 2018. “Viking VR: Designing a Virtual Reality Experience for a Museum.” In Proceedings of the 2018 Designing Interactive Systems Conference 2018 – DIS ’18, 805–15. Hong Kong: ACM Press. https://doi.org/10.1145/3196709.3196714.

Sportun, Samantha. 2014. “The Future Landscape of 3D in Museums.” In The Multisensory Museum: Cross-Disciplinary Perspectives on Touch, Sound, Smell, Memory, and Space, edited by Nina Levent and Alvaro Pascual-Leone, 273–79. Lanham, MD: Rowman & Littlefield Publishers. http://ebookcentral.proquest.com/lib/miami/detail.action?docID=1648843.

Tilley, Christopher, Webb Keane, Susanne Küchler, and Michael Rowlands. 2006. Handbook of Material Culture. London: Sage Publications. https://doi.org/10.4135/9781848607972.

Totten, Christopher W. 2014. An Architectural Approach to Level Design. Boca Raton: CRC Press.

University of Miami Libraries and Lowe Art Museum. 2019. “The Andrew W. Mellon CREATE Grants Program | University of Miami Libraries and Lowe Art Museum.” https://www.library.miami.edu/create/.

Victoria University of Wellington. 2017. “3D Printing Technologies Transport Students to Ancient Greece.” Victoria University of Wellington. July 31. https://www.victoria.ac.nz/news/2017/07/3d-printing-technologies-transport-students-to-ancient-greece.

Williams, Tasia L. 2017. “More than Just a Novelty? Museum Visitor Interactions with 3D Printed Artifacts.” MA Thesis, University of Washington. https://digital.lib.washington.edu:443/researchworks/handle/1773/39772.

Wilson, Paul F., Janet Stott, Jason M. Warnett, Alex Attridge, M. Paul Smith, and Mark A. Williams. 2018. “Museum Visitor Preference for the Physical Properties of 3D Printed Replicas.” Journal of Cultural Heritage 32 (July): 176–85. https://doi.org/10.1016/j.culher.2018.02.002.

Wired! Lab. 2019. “Courses.” Wired! Lab | Digital Art History & Visual Culture. Accessed October 7. http://www.dukewired.org/courses/.

Younan, Sarah, and Cathy Treadaway. 2015. “Digital 3D Models of Heritage Artefacts: Towards a Digital Dream Space.” Digital Applications in Archaeology and Cultural Heritage 2, no. 4: 240–47. https://doi.org/10.1016/j.daach.2015.11.001.

Acknowledgments

The authors would like to acknowledge the generous support of the CREATE grant from the Mellon Foundation for the implementation of this project. They would like to thank the Lowe Art Museum, the University of Miami College of Arts and Sciences, School of Communication, the College of Engineering, the University of Miami Libraries, and the Academic Technologies unit. In addition to these institutional partners, the authors would like to recognize a number of individuals who contributed to the success of this project: Diana Arboleda, Ching-Hua Chuan, Christina Larson, Paige Morgan, Kojo Opuni, Michaela Senior, and Han Tran. Finally, this project would not have come to fruition without the creativity and hard work of the University of Miami students, undergraduate and graduate, who participated in ARH 333P/CLA 226P, CIM 616, and CIM 624 in the Spring Semester of 2019. The photos of antiquities used in this paper were captured by the undergraduate students; photos of 3D printed reconstructions were taken by T.J. Lievonen.

About the Authors

Karen Mathews is an Associate Professor in the Department of Art and Art History at the University of Miami. She specializes in ancient, medieval, and Islamic art and has taught a number of courses that integrate photogrammetry and 3D modeling into the art history curriculum. She is currently working on several class-based projects that explore the presentation of art historical content in AR and immersive VR platforms.

Gemma Henderson is a Senior Instructional Designer on the Learning Innovation and Faculty Engagement Team at the University of Miami. Gemma partners and consults with faculty, academic units, and other university stakeholders on curriculum development and digital pedagogies. On behalf of the Academic Technologies unit, she primarily engages in institution-wide educational outreach to support innovation in undergraduate and graduate courses, including initiatives such as faculty learning communities, educational scholarship, and the university’s annual teaching and learning conference.

A hand-drawn zine cover, with "Weigh of Showing" written as a title in red, and the beginning of a tweet by Emily Drabinski cut out and pasted below.
0

Weigh of Showing

Abstract

“Weigh of Showing” is a zine originally written for an Interactive Technology and Pedagogy class taught by Steve Brier and Michael Mandiberg at the CUNY Graduate Center. Through introspection, exploration, and engagement with education readings, the author considers the education process, research papers, and alternative methods of showing scholarly mastery.

Freedman 19 Staging Ready

Click here to download a pdf of Weigh of Showing. For best printing results, choose the “print-as-booklet” option if available.

Click here to download a line-by-line, textual description of Weigh of Showing.

About the Author

Jenna Freedman is finishing up her MA in Digital Humanities (MADH) from the CUNY Graduate Center (February 2020), working with fellow MADH student Lauren Kehoe on building a union catalog for zines (zinecat.org). By weekday she is the Associate Director of Communications and Zine Librarian at Barnard College. She makes zines and writes and presents here and there about zines, library activism, and other topics.

Need help with the Commons? Visit our
help page
Send us a message
Skip to toolbar